1. Approach to Improve the Performance Using Bit-level Sparsity in Neural Networks
- Author
-
Younghoon Byun, Seokhyeong Kang, Youngjoo Lee, Seunggyu Lee, Yesung Kang, and Eunji Kwon
- Subjects
Speedup ,Artificial neural network ,Computer science ,Electric breakdown ,Outlier ,Energy consumption ,Clipping (computer graphics) ,Algorithm ,Convolutional neural network ,Efficient energy use - Abstract
This paper presents a convolutional neural network (CNN) accelerator that can skip zero weights and handle outliers, which are few but have a significant impact on the accuracy of CNNs, to achieve speedup and increase the energy efficiency of CNN. We propose an offline weight-scheduling algorithm which can skip zero weights and combine two non-outlier weights simultaneously using bit-level sparsity of CNNs. We use a reconfigurable multiplier-and-accumulator (MAC) unit for two purposes; usually used to compute combined two non-outliers and sometimes to compute outliers. We further improve the speedup of our accelerator by clipping some of the outliers with negligible accuracy loss. Compared to DaDianNao [7] and Bit-Tactical [16] architectures, our CNN accelerator can improve the speed by 3.34 and 2.31 times higher and reduce energy consumption by 29.3% and 30.2%, respectively.
- Published
- 2021
- Full Text
- View/download PDF