19 results on '"Jonathan Martens"'
Search Results
2. Hydrogen Bonding Shuts Down Tunneling in Hydroxycarbenes: A Gas-Phase Study by Tandem-Mass Spectrometry, Infrared Ion Spectroscopy, and Theory
- Author
-
Mathias Paul, Thomas Thomulka, Wacharee Harnying, Jörg-Martin Neudörfl, Charlie R. Adams, Jonathan Martens, Giel Berden, Jos Oomens, Anthony J. H. M. Meijer, Albrecht Berkessel, and Mathias Schäfer
- Subjects
FELIX Molecular Structure and Dynamics ,Colloid and Surface Chemistry ,General Chemistry ,Biochemistry ,Catalysis - Abstract
Contains fulltext : 293912.pdf (Publisher’s version ) (Closed access) 12 p.
- Published
- 2023
3. Characterization of Elusive Reaction Intermediates Using Infrared Ion Spectroscopy: Application to the Experimental Characterization of Glycosyl Cations
- Author
-
Floor ter Braak, Hidde Elferink, Kas J. Houthuijs, Jos Oomens, Jonathan Martens, and Thomas J. Boltje
- Subjects
FELIX Molecular Structure and Dynamics ,Glycosylation ,Spectrophotometry, Infrared ,Cations ,Solvents ,Oligosaccharides ,Synthetic Organic Chemistry ,General Medicine ,General Chemistry - Abstract
A detailed understanding of the reaction mechanism(s) leading to stereoselective product formation is crucial to understanding and predicting product formation and driving the development of new synthetic methodology. One way to improve our understanding of reaction mechanisms is to characterize the reaction intermediates involved in product formation. Because these intermediates are reactive, they are often unstable and therefore difficult to characterize using experimental techniques. For example, glycosylation reactions are critical steps in the chemical synthesis of oligosaccharides and need to be stereoselective to provide the desired α- or β-diastereomer. It remains challenging to predict and control the stereochemical outcome of glycosylation reactions, and their reaction mechanisms remain a hotly debated topic. In most cases, glycosylation reactions take place via reaction mechanisms in the continuum between S
- Published
- 2022
- Full Text
- View/download PDF
4. An in silico infrared spectral library of molecular ions for metabolite identification
- Author
-
Kas J. Houthuijs, Giel Berden, Udo F. H. Engelke, Vasuk Gautam, David S. Wishart, Ron A. Wevers, Jonathan Martens, and Jos Oomens
- Abstract
Infrared ion spectroscopy (IRIS) continues to see increasing use as an analytical tool for small-molecule identification in conjunction with mass spectrometry (MS). The IR spectrum of an m/z selected population of ions constitutes a unique fingerprint that is specific to the molecular structure. However, direct translation of an IR spectrum to a molecular structure remains challenging, as reference libraries of IR spectra of molecular ions largely do not exist. Quantum-chemically computed spectra can reliably be used as reference, but the challenge of selecting the candidate structures remains. Here we introduce an in silico library of vibrational spectra of common MS adducts of over 4500 compounds found in the human metabolome database (HMDB). In total, the library currently contains more than 75 000 spectra computed at the DFT level that can be queried with an experimental IR spectrum. Moreover, we introduce a database of 189 experimental IRIS spectra, which is employed to validate the automated spectral matching routines. This demonstrates that 75% of metabolites in the experimental dataset is correctly identified, based solely on their exact m/z and IRIS spectrum. Additionally, we demonstrate an approach for specifically identifying substructures by performing a search without m/z constraints to find structural analogues. Such an unsupervised search paves the way towards the de novo identification of unknowns that are absent in spectral libraries. We apply the in silico spectral library to identify an unknown in a plasma sample as 3-hydroyxhexanoic acid, highlighting the potential of the method.
- Published
- 2023
- Full Text
- View/download PDF
5. Identification of Drug Metabolites with Infrared Ion Spectroscopy – Application to Midazolam in vitro Metabolism**
- Author
-
Rianne E. van Outersterp, Jonathan Martens, Giel Berden, Arnaud Lubin, Filip Cuyckens, and Jos Oomens
- Subjects
General Medicine - Published
- 2023
- Full Text
- View/download PDF
6. Identification of Delta-1-pyrroline-5-carboxylate derived biomarkers for hyperprolinemia type II
- Author
-
Jona Merx, Rianne E. van Outersterp, Udo F. H. Engelke, Veronique Hendriks, Ron A. Wevers, Marleen C. D. G. Huigen, Huub W. A. H. Waterval, Irene M. L. W. Körver-Keularts, Jasmin Mecinović, Floris P. J. T. Rutjes, Jos Oomens, Karlien L. M. Coene, Jonathan Martens, Thomas J. Boltje, MUMC+: DA KG Lab Centraal Lab (9), MUMC+: Academisch Ziekenhuis Maastricht (0), MUMC+: DA KG Lab Specialisten (9), RS: Carim - H02 Cardiomyopathy, and MUMC+: DA CDL Algemeen (9)
- Subjects
FELIX Molecular Structure and Dynamics ,Pyridoxal ,Proline ,Inborn Errors ,Medicine (miscellaneous) ,Other Research Radboud Institute for Molecular Life Sciences [Radboudumc 0] ,Metabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6] ,Synthetic Organic Chemistry ,Disorders of movement Donders Center for Medical Neuroscience [Radboudumc 3] ,General Biochemistry, Genetics and Molecular Biology ,Phosphates ,Amino Acid Metabolism ,1-Pyrroline-5-Carboxylate Dehydrogenase ,Proline/metabolism ,All institutes and research themes of the Radboud University Medical Center ,Proline Oxidase ,Pyrroles ,1-Pyrroline-5-Carboxylate Dehydrogenase/deficiency ,General Agricultural and Biological Sciences ,Proline Oxidase/genetics ,Amino Acid Metabolism, Inborn Errors ,Biomarkers - Abstract
Hyperprolinemia type II (HPII) is an inborn error of metabolism due to genetic variants in ALDH4A1, leading to a deficiency in Δ-1-pyrroline-5-carboxylate (P5C) dehydrogenase. This leads to an accumulation of toxic levels of P5C, an intermediate in proline catabolism. The accumulating P5C spontaneously reacts with, and inactivates, pyridoxal 5’-phosphate, a crucial cofactor for many enzymatic processes, which is thought to be the pathophysiological mechanism for HPII. Here, we describe the use of a combination of LC-QTOF untargeted metabolomics, NMR spectroscopy and infrared ion spectroscopy (IRIS) to identify and characterize biomarkers for HPII that result of the spontaneous reaction of P5C with malonic acid and acetoacetic acid. We show that these biomarkers can differentiate between HPI, caused by a deficiency of proline oxidase activity, and HPII. The elucidation of their molecular structures yields insights into the disease pathophysiology of HPII.
- Published
- 2022
7. Characterization of Cyclic N-Acyliminium Ions by Infrared Ion Spectroscopy
- Author
-
Jona Merx, Kas J. Houthuijs, Hidde Elferink, Eva Witlox, Jasmin Mecinović, Jos Oomens, Jonathan Martens, Thomas J. Boltje, and Floris P. J. T. Rutjes
- Subjects
Ions ,FELIX Molecular Structure and Dynamics ,heterocycles ,Spectrophotometry, Infrared ,N-acyliminium ion ,Nitrogen ,010405 organic chemistry ,Organic Chemistry ,Spectrophotometry, Infrared/methods ,Molecular Conformation ,Synthetic Organic Chemistry ,General Chemistry ,DFT calculations ,stereoselectivity ,010402 general chemistry ,01 natural sciences ,Catalysis ,3. Good health ,0104 chemical sciences ,ion spectroscopy ,Tandem Mass Spectrometry ,Ions/chemistry - Abstract
N- Acyliminium ions are highly reactive intermediates that are important for creating CC-bonds adjacent to nitrogen atoms. Here we report the characterization of cyclic N -acyliminium ions in the gas phase, generated by collision induced dissociation tandem mass spectrometry followed by infrared ion spectroscopy using the FELIX infrared free electron laser. Comparison of the DFT calculated spectra with the experimentally observed IR spectra provided valuable insights in the conformations of the N -acyliminium ions.
- Published
- 2022
- Full Text
- View/download PDF
8. Novel cerebrospinal fluid biomarkers of glucose transporter type 1 deficiency syndrome: Implications beyond the brain's energy deficit
- Author
-
Tessa M. A. Peters, Jona Merx, Pieter C. Kooijman, Marek Noga, Siebolt de Boer, Loes A. van Gemert, Guido Salden, Udo F. H. Engelke, Dirk J. Lefeber, Rianne E. van Outersterp, Giel Berden, Thomas J. Boltje, Rafael Artuch, Leticia Pías‐Peleteiro, Ángeles García‐Cazorla, Ivo Barić, Beat Thöny, Jos Oomens, Jonathan Martens, Ron A. Wevers, Marcel M. Verbeek, Karlien L. M. Coene, and Michèl A. A. P. Willemsen
- Subjects
FELIX Molecular Structure and Dynamics ,Genetics ,Metabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6] ,Synthetic Organic Chemistry ,Disorders of movement Donders Center for Medical Neuroscience [Radboudumc 3] ,Genetics (clinical) ,O-glucosylation ,SLC2A1 ,next-generation metabolic screening ,oligosaccharides ,untargeted metabolomics - Abstract
We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic cerebrospinal fluid (CSF) profiles from 12 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3- glucose, and xylose-α1-3-xylose-α1-3- glucose, of which the latter two have not previously been identified in body fluids. CSF concentrations of gluconic + galactonic acid may be reduced as these metabolites could serve as alternative substrates for the pentose phosphate pathway. Xylose-α1-3-glucose and xylose-α1-3- xylose-α1-3-glucose may originate from glycosylated proteins ; their decreased levels are hypothetically the consequence of insufficient glucose, one of two substrates for O- glucosylation. Since many proteins are O- glucosylated, this deficiency may affect cellular processes and thus contribute to GLUT1DS pathophysiology. The novel CSF biomarkers have the potential to improve the biochemical diagnosis of GLUT1DS. Our findings imply that brain glucose deficiency in GLUT1DS may cause disruptions at the cellular level that go beyond energy metabolism, underlining the importance of developing treatment strategies that directly target cerebral glucose uptake.
- Published
- 2023
- Full Text
- View/download PDF
9. Targeted Small-Molecule Identification Using Heartcutting Liquid Chromatography-Infrared Ion Spectroscopy
- Author
-
Rianne E. van Outersterp, Jitse Oosterhout, Christoph R. Gebhardt, Giel Berden, Udo F. H. Engelke, Ron A. Wevers, Filip Cuyckens, Jos Oomens, and Jonathan Martens
- Subjects
FELIX Molecular Structure and Dynamics ,All institutes and research themes of the Radboud University Medical Center ,Disorders of movement Donders Center for Medical Neuroscience [Radboudumc 3] ,Analytical Chemistry - Abstract
Contains fulltext : 290351.pdf (Publisher’s version ) (Open Access)
- Published
- 2023
10. A Dynamic Proton Bond: MH+·H2O ⇌ M·H3O+ Interconversion in Loosely Coordinated Environments
- Author
-
Bruno Martínez-Haya, Juan Ramón Avilés-Moreno, Francisco Gámez, Jonathan Martens, Jos Oomens, Giel Berden, and UAM. Departamento de Química Física Aplicada
- Subjects
FELIX Molecular Structure and Dynamics ,Proton Transport ,Supramolecular complexes ,Mass spectrometry ,Chinese Continental Scientific Drilling Project ,Infrared ion spectroscopy ,General Materials Science ,Química ,Crown ethers ,Physical and Theoretical Chemistry ,Molecular Dynamics ,Proton bonding - Abstract
The interaction of organic molecules with oxonium cations within their solvation shell may lead to the emergence of dynamic supramolecular structures with recurrently changing host–guest chemical identity. We illustrate this phenomenon in benchmark proton-bonded complexes of water with polyether macrocyles. Despite the smaller proton affinity of water versus the ether group, water in fact retains the proton in the form of H3O+, with increasing stability as the coordination number increases. Hindrance in many-fold coordination induces dynamic reversible (ether)·H3O+ ⇌ (etherH+)·H2O interconversion. We perform infrared action ion spectroscopy over a broad spectral range to expose the vibrational signatures of the loose proton bonding in these systems. Remarkably, characteristic bands for the two limiting proton bonding configurations are observed in the experimental vibrational spectra, superimposed onto diffuse bands associated with proton delocalization. These features cannot be described by static equilibrium structures but are accurately modeled within the framework of ab initio molecular dynamics., Area of Physical Chemistry
- Published
- 2023
11. Probing radical versus proton migration in the aniline cation with IRMPD spectroscopy
- Author
-
Laura Finazzi, Jonathan Martens, Giel Berden, and Jos Oomens
- Subjects
FELIX Molecular Structure and Dynamics ,Biophysics ,Physical and Theoretical Chemistry ,Condensed Matter Physics ,Molecular Biology - Abstract
Contains fulltext : 292786.pdf (Publisher’s version ) (Open Access)
- Published
- 2023
12. Competing C-4 and C-5-Acyl Stabilization of Uronic Acid Glycosyl Cations
- Author
-
Hidde Elferink, Wouter A. Remmerswaal, Kas J. Houthuijs, Oscar Jansen, Thomas Hansen, Anouk M. Rijs, Giel Berden, Jonathan Martens, Jos Oomens, Jeroen D. C. Codée, Thomas J. Boltje, Organic Chemistry, AIMMS, Chemistry and Pharmaceutical Sciences, and BioAnalytical Chemistry
- Subjects
FELIX Molecular Structure and Dynamics ,Spectrophotometry, Infrared ,Organic Chemistry ,Carboxylic Acids ,carbohydrates ,Synthetic Organic Chemistry ,General Chemistry ,computational chemistry ,Catalysis ,reaction mechanisms ,Uronic Acids ,Isomerism ,IR spectroscopy ,Cations - Abstract
Uronic acids are carbohydrates carrying a terminal carboxylic acid and have a unique reactivity in stereoselective glycosylation reactions. Herein, the competing intramolecular stabilization of uronic acid cations by the C-5 carboxylic acid or the C-4 acetyl group was studied with infrared ion spectroscopy (IRIS). IRIS reveals that a mixture of bridged ions is formed, in which the mixture is driven towards the C-1,C-5 dioxolanium ion when the C-5,C-2-relationship is cis, and towards the formation of the C-1,C-4 dioxepanium ion when this relation is trans. Isomer-population analysis and interconversion barrier computations show that the two bridged structures are not in dynamic equilibrium and that their ratio parallels the density functional theory computed stability of the structures. These studies reveal how the intrinsic interplay of the different functional groups influences the formation of the different regioisomeric products.
- Published
- 2022
- Full Text
- View/download PDF
13. Identification of drug metabolites with infrared ion spectroscopy – application to midazolam in vitro metabolism
- Author
-
Rianne van Outersterp, Jonathan Martens, Giel berden, Arnaud Lubin, Filip Cuyckens, and Jos Oomens
- Abstract
The identification of biotransformation products of drug compounds is a crucial step in drug development. Over the last decades, liquid chromatography-mass spectrometry (LC-MS) has become the method of choice for metabolite profiling because of its high sensitivity and selectivity. However, determining the full molecular structure of the detected metabolites, including the exact biotransformation site, remains challenging on the basis of MS alone. Here we explore infrared ion spectroscopy (IRIS) as a novel MS-based method for the elucidation of metabolic pathways in drug metabolism research. Using the drug midazolam as an example, we identify several biotransformation products directly from an in vitro drug incubation sample. We show that IR spectra of the aglycone MS/MS fragment ions of glucuronide metabolites establish a direct link between detected phase I and phase II metabolites. Moreover, using quantum-chemically computed IR spectra of candidate structures, we are able to assign the exact sites of biotransformation in absence of reference standards. Additionally, we demonstrate the utility of IRIS for structural elucidation by identifying several ring-opened midazolam derivatives formed in an acidic environment.
- Published
- 2022
- Full Text
- View/download PDF
14. Stabilization of Glucosyl Dioxolenium Ions by 'Dual Participation' of the 2,2-Dimethyl-2-(
- Author
-
Wouter A, Remmerswaal, Kas J, Houthuijs, Roel, van de Ven, Hidde, Elferink, Thomas, Hansen, Giel, Berden, Herman S, Overkleeft, Gijsbert A, van der Marel, Floris P J T, Rutjes, Dmitri V, Filippov, Thomas J, Boltje, Jonathan, Martens, Jos, Oomens, and Jeroen D C, Codée
- Subjects
Ions ,Glycosylation ,Spectrophotometry, Infrared ,Stereoisomerism ,Glycosides - Abstract
The stereoselective introduction of glycosidic bonds is of paramount importance to oligosaccharide synthesis. Among the various chemical strategies to steer stereoselectivity, participation by either neighboring or distal acyl groups is used particularly often. Recently, the use of the 2,2-dimethyl-2-(
- Published
- 2022
15. Laboratory IR Spectra of the Ionic Oxidized Fullerenes C
- Author
-
Julianna, Palotás, Jonathan, Martens, Giel, Berden, and Jos, Oomens
- Abstract
We present the first experimental vibrational spectra of gaseous oxidized derivatives of C
- Published
- 2022
16. Novel CSF biomarkers of GLUT1 deficiency syndrome: implications beyond the brain’s energy deficit
- Author
-
Tessa M.A. Peters, Jona Merx, Pieter C. Kooijman, Marek Noga, Siebolt de Boer, Loes A. van Gemert, Guido Salden, Udo F.H. Engelke, Dirk J. Lefeber, Rianne E. van Outersterp, Giel Berden, Thomas J. Boltje, Rafael Artuch, Leticia Pías, Ángeles García-Cazorla, Ivo Barić, Beat Thöny, Jos Oomens, Jonathan Martens, Ron A. Wevers, Marcel M. Verbeek, Karlien L.M. Coene, and Michèl A.A.P. Willemsen
- Abstract
We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic CSF profiles from 11 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose, of which the latter two have not previously been identified in body fluids. CSF concentrations of gluconic + galactonic acid may be reduced as these metabolites could serve as alternative substrates for the pentose phosphate pathway. Xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose may originate from O-glycosylated proteins; their decreased levels are hypothetically the consequence of insufficient glucose, one of two substrates for O-glucosylation. Since many proteins are O-glucosylated, this deficiency may affect cellular processes and thus contribute to GLUT1DS pathophysiology. The novel CSF biomarkers have the potential to improve the biochemical diagnosis of GLUT1DS. Our findings imply that brain glucose deficiency in GLUT1DS may cause disruptions at the cellular level that go beyond energy metabolism, underlining the importance of developing treatment strategies that directly target cerebral glucose uptake.
- Published
- 2022
- Full Text
- View/download PDF
17. Unidirectional Double- and Triple-Hydrogen Rearrangement Reactions Probed by Infrared Ion Spectroscopy
- Author
-
Dennis Zeh, Marcel Bast, Jonathan Martens, Giel Berden, Jos Oomens, Sandra Brünken, Stephan Schlemmer, Mathias Schäfer, and Dietmar Kuck
- Subjects
FELIX Molecular Structure and Dynamics ,Structural Biology ,FELIX Infrared and Terahertz Spectroscopy ,Spectroscopy - Abstract
Unidirectional double-hydrogen (2H) and triple-hydrogen (3H) rearrangement reactions occur upon electron-ionization-induced fragmentation of trans-2-(4-N,N-dimethylaminobenzyl)-1-indanol (1), trans-2-(4-methoxybenzyl)-1-indanol (2), 4-(4-N,N-dimethylaminophenyl)-2-butanol (3), and related compounds, as reported some 35 years ago (Kuck, D.; Filges, U. Org. Mass Spectrom. 1988, 23, 643-653). These unusual intramolecular redox processes were found to dominate the mass spectra of long-lived, metastable ions. The present report provides independent evidence for the structures of the product ions formed by the 2H and 3H rearrangement in an ion trap instrument. The radical cations 1+ and 3+ as well as ionized 1-(4-N,N-dimethylaminophenyl)-5-(4-methoxyphenyl)-3-pentanol, 5+, were generated by electrospray ionization from anhydrous acetonitrile solutions. The 2H and 3H fragment ions were obtained by collision-induced dissociation and characterized by IR ion spectroscopy and density functional theory calculations. Comparison of the experimental and calculated infrared ion spectra enabled the identification of the 2H rearrangement product ion, C9H14N+ (m/z 136), as an N,N-dimethyl-para-toluidinium ion bearing the extra proton ortho to the amino group, a tautomer which was calculated to be 31 kJ/mol less stable than the corresponding N-protonated form. The 3H rearrangement product ion, C8H13N+ (m/z 123), formerly assumed to be a distonic ammonium ion bearing a cyclohexadienyl radical, was now identified as a conventional radical cation, ionized N,N-dimethyl-2,3-dihydro-para-toluidine. Thus, the 3H rearrangement represents an intramolecular transfer hydrogenation between a secondary alcohol and an ionized aromatic ring. Based on these structural assignments, more detailed mechanisms for the unidirectional 2H and 3H rearrangement reactions are proposed.
- Published
- 2022
18. Laboratory IR Spectra of the Ionic Oxidized Fullerenes C60O+ and C60OH+
- Author
-
Julianna Palotás, Jonathan Martens, Giel Berden, Jos Oomens, and Molecular Spectroscopy (HIMS, FNWI)
- Subjects
FELIX Molecular Structure and Dynamics ,Physical and Theoretical Chemistry - Abstract
We present the first experimental vibrational spectra of gaseous oxidized derivatives of C60 in protonated and radical cation forms, obtained through infrared multiple-photon dissociation spectroscopy using the FELIX free-electron laser. Neutral C60O has two nearly iso-energetic isomers: the epoxide isomer in which the O atom bridges a CC bond that connects two six-membered rings and the annulene isomer in which the O atom inserts into a CC bond connecting a five- and a six-membered ring. To determine the isomer formed for C60O+ in our experiment a question that cannot be confidently answered on the basis of the DFT-computed stabilities alone we compare our experimental IR spectra to vibrational spectra predicted by DFT calculations. We conclude that the annulene-like isomer is formed in our experiment. For C60OH+, a strong OH stretch vibration observed in the 3 μm range of the spectrum immediately reveals its structure as C60 with a hydroxyl group attached, which is further confirmed by the spectrum in the 400-1600 cm-1 range. We compare the experimental spectra of C60O+ and C60OH+ to the astronomical IR emission spectrum of a fullerene-rich planetary nebula and discuss their astrophysical relevance.
- Published
- 2022
- Full Text
- View/download PDF
19. Stabilization of Glucosyl Dioxolenium Ions by 'Dual Participation' of the 2,2-Dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) Protection Group for 1,2-cis-Glucosylation
- Author
-
Wouter A. Remmerswaal, Kas J. Houthuijs, Roel van de Ven, Hidde Elferink, Thomas Hansen, Giel Berden, Herman S. Overkleeft, Gijsbert A. van der Marel, Floris P. J. T. Rutjes, Dmitri V. Filippov, Thomas J. Boltje, Jonathan Martens, Jos Oomens, Jeroen D. C. Codée, and Chemistry and Pharmaceutical Sciences
- Subjects
FELIX Molecular Structure and Dynamics ,Organic Chemistry ,Synthetic Organic Chemistry ,Theoretical Chemistry - Abstract
The stereoselective introduction of glycosidic bonds is of paramount importance to oligosaccharide synthesis. Among the various chemical strategies to steer stereoselectivity, participation by either neighboring or distal acyl groups is used particularly often. Recently, the use of the 2,2-dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) protection group was shown to offer enhanced stereoselective steering compared to other acyl groups. Here, we investigate the origin of the stereoselectivity induced by the DMNPA group through systematic glycosylation reactions and infrared ion spectroscopy (IRIS) combined with techniques such as isotopic labeling of the anomeric center and isomer population analysis. Our study indicates that the origin of the DMNPA stereoselectivity does not lie in the direct participation of the nitro moiety but in the formation of a dioxolenium ion that is strongly stabilized by the nitro group.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.