1. Comprehensive model of electromigrative transport in microfluidic paper based analytical devices
- Author
-
Federico Schaumburg, Pablo A. Kler, and Claudio Luis Alberto Berli
- Subjects
Electrophoresis ,Paper ,Materials science ,Otras Ingenierías y Tecnologías ,Differential equation ,Capillary action ,Clinical Biochemistry ,Microfluidics ,INGENIERÍAS Y TECNOLOGÍAS ,02 engineering and technology ,ELECTROPHORESIS ,01 natural sciences ,Biochemistry ,Electromigration ,Analytical Chemistry ,Diffusion ,ELECTROOSMOTIC FLOW ,PAPER-BASED MICROFLUIDICS ,Diffusion (business) ,010401 analytical chemistry ,Electric Conductivity ,TRANSPORT PHENOMENA ,Mechanics ,Microfluidic Analytical Techniques ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Models, Chemical ,MATHEMATICAL MODELING ,Electric potential ,0210 nano-technology ,Transport phenomena ,Porous medium - Abstract
A complete mathematical model for electromigration in paper-based analytical devices is derived, based on differential equations describing the motion of fluids by pressure sources and EOF, the transport of charged chemical species, and the electric potential distribution. The porous medium created by the cellulose fibers is considered like a network of tortuous capillaries and represented by macroscopic parameters following an effective medium approach. The equations are obtained starting from their open-channel counterparts, applying scaling laws and, where necessary, including additional terms. With this approach, effective parameters are derived, describing diffusion, mobility, and conductivity for porous media. While the foundations of these phenomena can be found in previous reports, here, all the contributions are analyzed systematically and provided in a comprehensive way. Moreover, a novel electrophoretically driven dispersive transport mechanism in porous materials is proposed. Results of the numerical implementation of the mathematical model are compared with experimental data, showing good agreement and supporting the validity of the proposed model. Finally, the model succeeds in simulating a challenging case of free-flow electrophoresis in paper, involving capillary flow and electrophoretic transport developed in a 2D geometry. Fil: Schaumburg, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Kler, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
- Published
- 2020