151. Eisenhart lifts and symmetries of time-dependent systems
- Author
-
Marco Cariglia, Gary W. Gibbons, Peter A. Horvathy, Christian Duval, Universidade Federal de Ouro Preto, Universidade Federal de Ouro Preto (UFOP), CNISM, CNR-INFM SOFT Dipartimento di Fisica, Università degli Studi di Camerino, Dipartimento di Fisica, CPT - E2 Géométrie, Physique et Symétries, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge [UK] (CAM), Laboratoire de Mathématiques et Physique Théorique (LMPT), Université de Tours-Centre National de la Recherche Scientifique (CNRS), Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China (IMP), Brazilian funding agency CNPQ for funding under project 205029/2014-0. 'Le Studium' research professorship (France). Chinese Academy of Sciences’ Presidential International Fellowship (Grant No. 2010T1J06), and Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
High Energy Physics - Theory ,Caldirola-Kanai model ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,General Physics and Astronomy ,General Relativity and Quantum Cosmology (gr-qc) ,damped oscillator ,01 natural sciences ,General Relativity and Quantum Cosmology ,Dmitriev-Zel'dovich equations ,Schrödinger equation ,Hamiltonian system ,symbols.namesake ,Killing vector field ,0103 physical sciences ,Quantum field theory ,Bargmann space ,010306 general physics ,Mathematical Physics ,Mathematical physics ,Physics ,Spacetime ,010308 nuclear & particles physics ,Hilbert space ,Mathematical Physics (math-ph) ,High Energy Physics - Theory (hep-th) ,Homogeneous space ,Dissipative system ,symbols ,Hubble model ,Eisenhart lift - Abstract
Certain dissipative systems, such as Caldirola and Kannai's damped simple harmonic oscillator, may be modelled by time-dependent Lagrangian and hence time dependent Hamiltonian systems with $n$ degrees of freedom. In this paper we treat these systems, their projective and conformal symmetries as well as their quantisation from the point of view of the Eisenhart lift to a Bargmann spacetime in $n+2$ dimensions, equipped with its covariantly constant null Killing vector field. Reparametrization of the time variable corresponds to conformal rescalings of the Bargmann metric. We show how the Arnold map lifts to Bargmann spacetime. We contrast the greater generality of the Caldirola-Kannai approach with that of Arnold and Bateman. At the level of quantum mechanics, we are able to show how the relevant Schr\"odinger equation emerges naturally using the techniques of quantum field theory in curved spacetimes, since a covariantly constant null Killing vector field gives rise to well defined one particle Hilbert space. Time-dependent Lagrangians arise naturally also in cosmology and give rise to the phenomenon of Hubble friction. We provide an account of this for Friedmann-Lemaitre and Bianchi cosmologies and how it fits in with our previous discussion in the non-relativistic limit., Comment: 34 pages, no figures. Minor corrections, some references added
- Published
- 2016
- Full Text
- View/download PDF