1. Remote multi-nodal voltage unbalance compensation in islanded AC microgrids
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. SEPIC - Sistemes Electrònics de Potència i de Control, Duarte Mejia, Josue Neftali, Velasco García, Manel, Martí Colom, Pau, Borrell Sanz, Ángel, Castilla Fernández, Miguel, Universitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica, Universitat Politècnica de Catalunya. SEPIC - Sistemes Electrònics de Potència i de Control, Duarte Mejia, Josue Neftali, Velasco García, Manel, Martí Colom, Pau, Borrell Sanz, Ángel, and Castilla Fernández, Miguel
- Abstract
Microgrids (MG) are exposed to voltage quality deterioration due to the presence of voltage unbalance. To deal with this problem, existing solutions based on Distributed Generation (DG) units interfaced by power electronics offer two type of strategies for voltage unbalance compensation depending on whether the compensation is performed at one remote node or at multiple local nodes. The first type is limited to a single node, and the second type is limited to apply at the DG units output (locally). This paper presents a multi nodal control scheme where DGs can compensate for voltage unbalance at multiple remote nodes of the MG, thus overcoming both state-of-the-art strategies limitations. In particular, negative-sequence voltage is eliminated at as many remote nodes as the number of available DG's. A systematic approach for the multiple-input/multiple-output (MIMO) nature of the problem is presented covering three aspects. First, a square MIMO control strategy is established and a feasibility test is derived to assess whether the problem can be solved. Second, the cross-coupling interaction between the multiple controllers is minimized by optimally selecting which DGs will contribute to mitigate the remote unbalances. Third, stability and transient dynamics are analyzed. Laboratory experimental results corroborate the control performance., This work was supported by I+D+i PID2021-122835OB-C21 research project, financed by MCIN/AEI/10.13039/501000011033 and FEDER “Una manera de hacer Europa., Peer Reviewed, Postprint (author's final draft)
- Published
- 2024