1. Nanoparticle-catalyzed transamination under tumor microenvironment conditions: A novel tool to disrupt the pool of amino acids and GSSG in cancer cells
- Author
-
Universidad de Zaragoza, Instituto de Salud Carlos III, European Commission, European Research Council, Gobierno de Aragón, Red Española de Supercomputación, Centro de Supercomputación de Galicia, Consejo Superior de Investigaciones Científicas (España), CSIC - Secretaría General Adjunta de Informática (SGAI), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Bonet-Aleta, Javier, Alegre-Requena, Juan V., Martin-Martin, Javier, Encinas-Giménez, Miguel, Martín-Pardillos, Ana, Martín-Duque, Pilar, Hueso, José L., Santamaría, Jesús, Universidad de Zaragoza, Instituto de Salud Carlos III, European Commission, European Research Council, Gobierno de Aragón, Red Española de Supercomputación, Centro de Supercomputación de Galicia, Consejo Superior de Investigaciones Científicas (España), CSIC - Secretaría General Adjunta de Informática (SGAI), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), Bonet-Aleta, Javier, Alegre-Requena, Juan V., Martin-Martin, Javier, Encinas-Giménez, Miguel, Martín-Pardillos, Ana, Martín-Duque, Pilar, Hueso, José L., and Santamaría, Jesús
- Abstract
Catalytic cancer therapy targets cancer cells by exploiting the specific characteristics of the tumor microenvironment (TME). TME-based catalytic strategies rely on the use of molecules already present in the TME. Amino groups seem to be a suitable target, given the abundance of proteins and peptides in biological environments. Here we show that catalytic CuFe2O4 nanoparticles are able to foster transaminations with different amino acids and pyruvate, another key molecule present in the TME. We observed a significant in cellulo decrease in glutamine and alanine levels up to 48 h after treatment. In addition, we found that di- and tripeptides also undergo catalytic transamination, thereby extending the range of the effects to other molecules such as glutathione disulfide (GSSG). Mechanistic calculations for GSSG transamination revealed the formation of an imine between the oxo group of pyruvate and the free −NH2 group of GSSG. Our results highlight transamination as alternative to the existing toolbox of catalytic therapies.
- Published
- 2024