1. The Nanoscale Ordering of Cellulose in a Hierarchically Structured Hybrid Material Revealed Using Scanning Electron Diffraction
- Author
-
Nero, Mathias, Ali, Hasan, Li, Yuanyuan, Willhammar, Tom, Nero, Mathias, Ali, Hasan, Li, Yuanyuan, and Willhammar, Tom
- Abstract
Cellulose, being a renewable and abundant biopolymer, has garnered significant attention for its unique properties and potential applications in hybrid materials. Understanding the hierarchical arrangement of cellulose nanofibers is crucial for developing cellulose-based materials with enhanced mechanical properties. In this study, the use of Scanning Electron Diffraction (SED) is presented to map the nanoscale orientation of cellulose fibers in a bio-composite material with a preserved wood cell structure. The SED data provides detailed insights into the ordering of cellulose with an extraordinary resolution of approximate to 15 nm. It enables a quantitative analysis of the fiber orientation over regions as large as entire cells. A highly organized arrangement of cellulose fibers within the secondary cell wall is observed, with a gradient of orientations toward the outer part of the wall. The in-plane fiber rotation is quantified, revealing a uniform orientation close to the middle lamella. Transversely sectioned material exhibits similar trends, suggesting a layered cell wall structure. Based on the SED data, a 3D model depicting the complex helical alignment of fibers throughout the cell wall is constructed. This study demonstrates the unique opportunities SED provides for characterizing the nanoscale hierarchical arrangement of cellulose nanofibers, empowering further research on a range of hybrid materials. Fundamental knowledge about the hierarchical arrangement of cellulose nanofiber is of great importance in developing new cellulose-based hybrid materials. Scanning electron diffraction is employed to map the cellulose nanofiber orientations throughout a wood-derived bio-based material. SED data reveals insights into cellulose alignment and enables precise quantitative fiber orientation analysis with a nanoscale spatial resolution.image
- Published
- 2024
- Full Text
- View/download PDF