1. Inkjet-Printed Carbon Nanotube Electrodes Modified with Dimercaptosuccinic Acid-Capped Fe3O4Nanoparticles on Reduced Graphene Oxide Nanosheets for Single-Drop Determination of Trifluoperazine
- Author
-
Ognjanović, Miloš, Stanković, Dalibor M., Jović, Milica, Krstić, Milena P., Lesch, Andreas, Girault, Hubert H., Antić, Branislav, Ognjanović, Miloš, Stanković, Dalibor M., Jović, Milica, Krstić, Milena P., Lesch, Andreas, Girault, Hubert H., and Antić, Branislav
- Abstract
Here, we report the design of a disposable single-drop voltammetric sensor for the quantitative determination of antipsychotic drug trifluoperazine (TFP). The sensor was built using inkjet-printed carbon nanotube (CNT) electrodes, which were modified with dimercaptosuccinic acid (DMSA)-coated magnetite nanoparticles uniformly dispersed over reduced graphene oxide nanosheets (DMSA/Fe3O4/RGO). The used modifying materials were characterized by electron microscopy techniques (transmission electron microscopy (TEM) and field emission-scanning electron microscopy (FE-SEM)), X-ray powder diffraction, ζ-potential measurements, dynamic light scattering (DLS), and electrochemical methods (cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS)). The developed sensor, best operated at pH 7 in the Britton-Robinson buffer solution (BRBS), shows linear electrocatalytic activity with TFP in the concentration range of 1-50 μM, a low detection limit of 0.54 μM, and excellent selectivity, repeatability, and reproducibility with an relative standard deviation (RSD) of 2.4%. A voltammetric approach using square wave voltammetry (SWV) is a sensitive technique under optimized conditions for the analytical determination of submicromolar amounts of TFP. Bare CNT and RGO- and DMSA/Fe3O4-modified CNT electrodes showed lower electrocatalytic activity than the DMSA/Fe3O4/RGO/CNT electrode. The development of this kind of TFP sensor based on nanoparticle-decorated graphene nanosheets can offer a tool for point-of-care applications as sensors in biomedicine.
- Published
- 2020