1. Rapid radiation of Southern Ocean shags in response to receding sea ice
- Author
-
Rawlence, Nicolas J., Salis, Alexander T., Spencer, Hamish G., Waters, Jonathan M., Scarsbrook, Lachie, Mitchell, Kieren J., Phillips, Richard A., Calderón, Luciano, Cook, Timothée R., Bost, Charles‐André, Dutoit, Ludovic, King, Tania M., Masello, Juan F., Nupen, Lisa J., Quillfeldt, Petra, Ratcliffe, Norman, Ryan, Peter G., Till, Charlotte E., Kennedy, Martyn, Rawlence, Nicolas J., Salis, Alexander T., Spencer, Hamish G., Waters, Jonathan M., Scarsbrook, Lachie, Mitchell, Kieren J., Phillips, Richard A., Calderón, Luciano, Cook, Timothée R., Bost, Charles‐André, Dutoit, Ludovic, King, Tania M., Masello, Juan F., Nupen, Lisa J., Quillfeldt, Petra, Ratcliffe, Norman, Ryan, Peter G., Till, Charlotte E., and Kennedy, Martyn
- Abstract
Understanding how natural populations respond to climatic shifts is a fundamental goal of biological research in a fast-changing world. The Southern Ocean represents a fascinating system for assessing large-scale climate-driven biological change, as it contains extremely isolated island groups within a predominantly westerly, circumpolar wind and current system. Blue-eyed shags represent a paradoxical seabird radiation—a circumpolar distribution implies strong dispersal capacity yet their species-rich nature suggests local adaptation and isolation. Here we attempt to resolve this paradox in light of the history of repeated cycles of climate change in the Southern Ocean.
- Published
- 2022