1. Tropical cyclone winds retrieval algorithm for the cyclone global navigation satellite system mission
- Author
-
National Natural Science Foundation of China, China Postdoctoral Science Foundation, Zhejiang Provincial Natural Science Foundation, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), European Commission, Consejo Superior de Investigaciones Científicas (España), Southern Marine Science and Engineering Guangdong Laboratory, Li, Xiaohui, Yang, Jingsong, Wang, Jiuke, Huang, Feixiong, Fang, He, Han, Guoqi, Xiao, Qingmei, Li, Weiqiang, National Natural Science Foundation of China, China Postdoctoral Science Foundation, Zhejiang Provincial Natural Science Foundation, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Ciencia e Innovación (España), European Commission, Consejo Superior de Investigaciones Científicas (España), Southern Marine Science and Engineering Guangdong Laboratory, Li, Xiaohui, Yang, Jingsong, Wang, Jiuke, Huang, Feixiong, Fang, He, Han, Guoqi, Xiao, Qingmei, and Li, Weiqiang
- Abstract
In this study, we propose a method for wind speed retrieval using a random forest (RF) algorithm for Cyclone Global Navigation Satellite System (CYGNSS) data. We first compared CYGNSS data with soil moisture active passive (SMAP) data and found a certain deviation in the CYGNSS “young sea, limited fetch” (YSLF) data product for high winds. Then, we used SMAP as the “ground truth” to train an RF model and applied it to the wind speed retrieval of CYGNSS data. The experimental results show that using the RF algorithm for wind speed retrieval can eliminate noise in the CYGNSS YSLF wind speed data and improve retrieval accuracy. In addition, we explored the impact of different input parameter combinations on model performance and found that using an 11-parameter model in CYGNSS wind speed retrieval can achieve optimal performance. This can provide a valuable reference for rapid near-real-time retrieval of tropical cyclones using CYGNSS.
- Published
- 2023