1. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence
- Author
-
Babin, C., Stöhr, R., Morioka, N., Linkewitz, T., Steidl, T., Wörnle, R., Liu, D., Hesselmeier, E., Vorobyov, V., Denisenko, A., Hentschel, M., Gobert, C., Berwian, P., (0000-0003-1807-3534) Astakhov, G., Knolle, W., Majety, S., Saha, P., Radulaski, M., Tien Son, N., Ul-Hassan, J., Kaiser, F., Wrachtrup, J., Babin, C., Stöhr, R., Morioka, N., Linkewitz, T., Steidl, T., Wörnle, R., Liu, D., Hesselmeier, E., Vorobyov, V., Denisenko, A., Hentschel, M., Gobert, C., Berwian, P., (0000-0003-1807-3534) Astakhov, G., Knolle, W., Majety, S., Saha, P., Radulaski, M., Tien Son, N., Ul-Hassan, J., Kaiser, F., and Wrachtrup, J.
- Abstract
Optically addressable spin defects in silicon carbide (SiC) are an emerging platform for quantum information processing. Lending themselves to modern semiconductor nanofabrication, they promise scalable high-efficiency spin-photon interfaces. We demonstrate here nanoscale fabrication of silicon vacancy centres (VSi) in 4H-SiC without deterioration of their intrinsic spin-optical properties. In particular, we show nearly transform limited photon emission and record spin coherence times for single defects generated via ion implantation and in triangular cross section waveguides. For the latter, we show further controlled operations on nearby nuclear spin qubits, which is crucial for fault-tolerant quantum information distribution based on cavity quantum electrodynamics.
- Published
- 2022