1. Cryogenic optical beam steering for superconducting device calibration
- Author
-
Stifter, K., Magoon, H., Anderson, A. J., Temples, D. J., Kurinsky, N. A., Stoughton, C., Hernandez, I., Nuñez, A., Anyang, K., Linehan, R., Young, M. R., Barry, P., Baxter, D., Bowring, D., Cancelo, G., Chou, A., Dibert, K. R., Figueroa-Feliciano, E., Hsu, L., Khatiwada, R., Mork, S. D., Stefanazzi, L., Tabassum, N., Uemura, S., Young, B. A., Stifter, K., Magoon, H., Anderson, A. J., Temples, D. J., Kurinsky, N. A., Stoughton, C., Hernandez, I., Nuñez, A., Anyang, K., Linehan, R., Young, M. R., Barry, P., Baxter, D., Bowring, D., Cancelo, G., Chou, A., Dibert, K. R., Figueroa-Feliciano, E., Hsu, L., Khatiwada, R., Mork, S. D., Stefanazzi, L., Tabassum, N., Uemura, S., and Young, B. A.
- Abstract
We have developed a calibration system based on a micro-electromechanical systems (MEMS) mirror that is capable of delivering an optical beam over a wavelength range of 180 -- 2000 nm (0.62 -- 6.89 eV) in a sub-Kelvin environment. This portable, integrated system can steer the beam over a $\sim$3 cm $\times$ 3 cm area on the surface of any sensor with a precision of $\sim$100 $\mu$m, enabling characterization of device response as a function of position. This fills a critical need in the landscape of calibration tools for sub-Kelvin devices, including those used for dark matter detection and quantum computing. These communities have a shared goal of understanding the impact of ionizing radiation on device performance, which can be pursued with our system. This paper describes the design of the first-generation calibration system and the results from successfully testing its performance at room temperature and 20 mK., Comment: 17 pages, 7 figures, submitted to SPIE
- Published
- 2024