1. Solutions to Passageways Detection in Natural Foliage with Biomimetic Sonar Robot
- Author
-
Wang, Ruihao and Wang, Ruihao
- Abstract
Numerous bats species have evolved biosonar to obtain information from their habitats with dense vegetation. Different from man-made sensors, such as stereo cameras and LiDAR, bats' biosonar has much lower spatial resolution and sampling rates. Their biosonar is capable of reliably finding narrow gaps in foliage to serve as a passageway to fly through. To investigate the sensory information under such capability, we have used a biomimetic sonar robot to collect the narrow gap echoes from an artificial hedge in a laboratory setup and from the natural foliage in outdoor environments respectively. The work in this dissertation presents the performance of a conventional energy approach and a deep-learning approach in the classification of echoes from foliage and gap. The deep-learning approach has better foliage versus passageway classification accuracy than the energy approach in both experiments, and it also shows good robustness than the latter one when dealing with data with great varieties in the outdoor experiments. A class activation mapping approach indicates that the initial rising flank inside the echo spectrogram contains critical information. This result corresponds to the neuromorphic spiking model which could be simplified as times where the echo amplitude crosses a certain threshold in a certain frequency range. With these findings, it could be demonstrated that the sensory information in clutter echoes plays an important role in detecting passageways in foliage regardless of the wider beamwith than the passageway geometry.
- Published
- 2022