1. Mechanical performance of aged cement-based matrices reinforced with recycled aramid textile nonwoven fabric: Comparison with other FRCMs
- Author
-
Sadrolodabaee, Payam, Fuente, Albert de la, Ardanuy, Mònica, Claramunt, Josep, Sadrolodabaee, Payam, Fuente, Albert de la, Ardanuy, Mònica, and Claramunt, Josep
- Abstract
Utilizing recycled fibers as reinforcement in cement-based matrices is an effective means of promoting waste recycling and adopting a circular economy approach in the construction industry. Within this framework, the recycling and potential reutilization of textile residues can improve the pre- and post-cracking performance of cement-based matrices intended for building components with up to intermediate structural responsibilities (i.e., panels and cladding elements for buildings). This research is focused on the mechanical and durability -through forced aging of dry-wet and freeze-thaw cycles- experimental characterization of laminated fabric-reinforced cementitious matrices (FRCMs) containing 4 and 6 nonwoven fabric layers obtained from end-of-life fire-protecting t-shirts. For this purpose, both direct and flexural tensile tests were conducted to characterize the mechanical performance of the composite. The tests on the 6-fabric layers produced panels with Portland Cement (PC) matrix, after 28-day of curing, led to average values of the maximum tensile strength of 3.7 MPa with associated toughness index superior to 25 kJ/m2, and mean modulus of rupture of 11.6 MPa with a fracture energy index of 4.3 kJ/m2. After dry-wet accelerated aging, the post-cracking performance of the developed composites decreased (on average, 40% in toughness and 11% in strength) due to fiber embrittlement. To better understand the performance of aged composites, shredded fibers recovered from protective clothing (mainly consisting of meta-aramid fibers) were immersed in the binary matrix. Accordingly, the mechanical properties of the fibers after 5 and 10 cycles of dry-wet aging were studied. Based on the results, replacing partially PC by silica fume (between 30% and 50%) was seen as a sustainable alternative to improve the performance of the aged fibers by more than 10%.
- Published
- 2024