6 results on '"Plant resistance genes"'
Search Results
2. This title is unavailable for guests, please login to see more information.
- Published
- 2024
Catalog
3. Regulation von NIMIN- und PR1-Genen aus Arabidopsis thaliana (L.) Heynh. und Nicotiana tabacum (L.) in der Salicylat-abhängigen Pathogenabwehr
- Author
-
Hermann, Meike and Hermann, Meike
- Abstract
Die systemisch aktivierte Resistenz (SAR) ist ein wichtiger Verteidigungsmechanismus der Pflanzen gegenüber Pathogenen. NPR1 übernimmt dabei die Rolle eines zentralen Regulators, der im Zusammenspiel mit TGA-Transkriptionsfaktoren die Salicylat (SA)-abhängige Ausbildung der SAR kontrolliert, die letztendlich zur Induktion von PR (pathogenesis-related) -Proteinen führt. Die SA-aktivierte Expression der PR1-Gene aus Arabidopsis thaliana (At) und Nicotiana tabacum (Nt) ist abhängig von as-1-ähnlichen cis-aktiven Elementen mit der Sequenz TGACG. In dieser Arbeit wurden neue Erkenntnisse zur funktionellen Bedeutung der NIMIN-Proteine und zur SA-abhängigen PR-Induktion gewonnen. In Arabidopsis gibt es 4 NIMIN-Gene - N1, N2, N3 und N1b, die unabhängig von TGA-Faktoren mit NPR1 interagieren. N1 und N2 besitzen ein gemeinsames Interaktionsmotiv und binden an den C-Terminus von AtNPR1, während N3 an den N-Terminus von AtNPR1 bindet. Relativ zentral in AtNPR1 liegt die Bindestelle für die TGA-Faktoren. Die Untersuchung der Expression der NIMIN-Gene im SAR-Signalweg sowie ihre mögliche Involvierung im Jasmonat (JA)-Signalnetzwerk sollte neue Hinweise zur Regulation der pflanzlichen Pathogenabwehr geben. Dabei wurde die Bedeutung von unterschiedlichen as-1-ähnlichen Elementen durch die Etablierung eines Hefe-Einhybridsystems analysiert. N1b ist vermutlich ein inaktives Pseudogen. Weder konnten in unbehandelten, SA- oder JA-behandelten Arabidopsis-Pflanzen Transkripte nachgewiesen werden noch war eine Konstruktion N1b[GUS] mit der 1135 Bp 5?-Region in der Lage, Reportergenexpression in transgenen Tabakpflanzen zu vermitteln. N3 wird in geringen Mengen konstitutiv und unabhängig von NPR1 exprimiert. Die Behandlung mit SA oder JA führt nicht zur Induktion von N3. Gleichermaßen lässt sich der N3-Promotor nicht durch die Behandlung mit SA, JA, TMV, H2O2 und Phytohormonen beeinflussen. Die Reportergenexpression des N3-Promotors erfolgt in Keimlingen transgener Tabakpflanzen konstituti, Systemic acquired resistance (SAR) is an important defense mechanism of plants against a broad range of pathogens. NPR1 acts as a central regulator controlling the salicylic acid (SA)-dependent formation of SAR through interaction with TGA transcription factors leading to the induction of ?pathogenesis-related? (PR) proteins. The SA-activated expression of the PR1 genes in Arabidopsis thaliana (At) and Nicotiana tabacum (Nt) depends on cis-acting as-1-like elements with a TGACG sequence. This dissertation studies the functional relevance of NIMIN proteins and SA-dependent PR gene induction using the analysis of gene regulation. Arabidopsis has four NIMIN-genes ? N1, N2, N3 and N1b which interact independently of TGA transcription factors with NPR1. N1 and N2 have a common interaction motif and bind to the C-terminus of AtNPR1, whereas N3 binds to the N-terminus of AtNPR1. The binding site for the TGA transcription factors is located relatively central in the AtNPR1 protein. The analysis of the NIMIN gene expression in the SA-dependent signaling pathway of SAR as well as their possible involvement in the Jasmonic (JA) signaling network ought to offer new aspects for understanding the regulation of plant pathogen defense. The relevance of different as-1-like elements was studied by establishing a yeast one-hybrid system. N1b is likely to be an inactive pseudogene. Neither could transcripts be detected in untreated, SA- or JA-treated Arabidopsis plants nor was the construct N1b[GUS] with the 1135 bp 5?-region able to induce reporter gene expression in transgenic tobacco plants. Expression of N3 occurs constitutively at low levels and independently of NPR1. Treatment with SA or JA does not lead to induction of N3. Likewise, the N3 promoter is not affected by treatment with SA, JA, TMV and phytohormones. Reporter gene expression of the N3 promoter occurs constitutively in transgenic tobacco seedlings. In contrast, N1 and N2 are clearly SA-induced. After SA induction, the more...
- Published
- 2009
4. Analyse von Pathogenresistenzmechanismen in Tomate (Solanum lycopersicum L.)
- Author
-
Gerhardts, Anja and Gerhardts, Anja
- Abstract
Pflanzen dienen vielen Lebensformen als Nahrungsquelle und Energielieferant und sind nicht zuletzt aufgrund ihrer Standortgebundenheit vielen schädigenden Umwelt-einflüssen ausgesetzt. Aufgrund dessen haben sie komplexe Abwehrmechanismen entwickelt, die sie beispielsweise vor dem Befall durch Pathogene schützen. Ein wichtiger Bestandteil dieser Abwehrmechanismen ist die Expression pflanzeneigener Resistenzgene (R), welche pathogene Avirulenzgenprodukte (Avr) erkennen, dadurch eine hypersensitive Reaktion (HR) in der Pflanzenzelle auslösen und somit eine systemische Infektion der Pflanze verhindern. Im Zuge dieser Arbeit wurden die Resistenzgene Tm-2 und Tm-2² aus Tomaten-pflanzen isoliert, kloniert und sequenziert. Die allelen R-Gene gehören zur Gruppe der CC-NBS-LRR-Resistenzgene, die im Pflanzenreich weit verbreitet ist, und unter-scheiden sich lediglich in vier Aminosäuren. Dies ist insofern erstaunlich, da durch Resistenz durchbrechende ToMV-Stämme gezeigt wurde, dass beide Resistenzgen-produkte unterschiedlich mit dem Transportprotein von ToMV (30 kDa MP = Avr) interagieren (Weber et al., 2004). Aus diesem Grund wurden durch einen Restriktionsschnitt im Bereich zwischen der NBS- und der LRR-Region chimäre Austauschkonstrukte (A1 und A2) der Resistenzgene erstellt, um Unterschiede in der Pathogenerkennung untersuchen zu können. Mit den vier Konstrukten wurden sowohl MM-Tomaten- aus auch nn- und NN-Tabakpflanzen transformiert. Die Expression der Resistenzgenkonstrukte in MM- und nn-Linien führte nicht wie erwartet zur Resistenzvermittlung gegenüber ToMV. Allerdings zeigte sich in älteren infizierten nn-Transformanden eine spontane Bildung von Blattnekrosen, was auf eine verspätet einsetzende HR hinweist. Dies lässt sich erklären, indem man davon ausgeht, dass die Anwesenheit des Resistenzgenproduktes alleine nicht zur Er-kennung des viralen Transportproteins ausreicht, sondern dass andere pflanzliche Komponenten an diesem Prozess beteiligt sind (wie beschrieben i, For many organisms plants serve as a source of nutrients and energy, but because of their static location they are exposed to various harmful environmental influences. Due to this factor they have developed complex defence mechanisms e. g. for protection against pathogens. An important aspect of these defence mechanisms is the expression of intrinsic resistance genes (R) that detect pathogenic avirulence gene products (Avr) thereby causing a hypersensitive response (HR) in the infected cells and consequently inhibiting the systemic infection of the plant. In this work the resistance genes Tm-2 and Tm-2² of tomato were isolated, cloned and sequenced. The allelic R genes are members of the CC-NBS-LRR group of resistance genes, which is widely spread in plants, and differ only in four amino acids. This is surprising because using resistance breaking ToMV strains Weber et al. (2004) showed that both resistance gene products interact differently with the movement protein (30 kDa MP = Avr) of the virus. To gain further insight into this phenomenon of different pathogen detection, chimeric exchange constructs (A1 and A2) were designed through restriction in the region between the NBS and the LRR domain. These four constructs were used for transformation of MM tomatoes as well as NN and nn tobacco plants. The expression of the resistance gene constructs in MM an nn lines did not confer the expected resistance to ToMV. Nevertheless in older infected nn transformants a formation of spontaneous necrosis was observed, which indicates a delayed development of HR. One possible explanation could be that the presence of only the resistance gene product is not sufficient to detect the viral movement protein and that other host cellular components are involved in this process (as in the guard hypothesis by Dangl and Jones, 2001). This assumption is supported by our yeast two hybrid interaction experiments which showed that a direct interaction of Tm-2 and 30 kDa MP can be excluded. F more...
- Published
- 2008
5. Analyse von Pathogenresistenzmechanismen in Tomate (Solanum lycopersicum L.)
- Author
-
Gerhardts, Anja and Gerhardts, Anja
- Abstract
Pflanzen dienen vielen Lebensformen als Nahrungsquelle und Energielieferant und sind nicht zuletzt aufgrund ihrer Standortgebundenheit vielen schädigenden Umwelt-einflüssen ausgesetzt. Aufgrund dessen haben sie komplexe Abwehrmechanismen entwickelt, die sie beispielsweise vor dem Befall durch Pathogene schützen. Ein wichtiger Bestandteil dieser Abwehrmechanismen ist die Expression pflanzeneigener Resistenzgene (R), welche pathogene Avirulenzgenprodukte (Avr) erkennen, dadurch eine hypersensitive Reaktion (HR) in der Pflanzenzelle auslösen und somit eine systemische Infektion der Pflanze verhindern. Im Zuge dieser Arbeit wurden die Resistenzgene Tm-2 und Tm-2² aus Tomaten-pflanzen isoliert, kloniert und sequenziert. Die allelen R-Gene gehören zur Gruppe der CC-NBS-LRR-Resistenzgene, die im Pflanzenreich weit verbreitet ist, und unter-scheiden sich lediglich in vier Aminosäuren. Dies ist insofern erstaunlich, da durch Resistenz durchbrechende ToMV-Stämme gezeigt wurde, dass beide Resistenzgen-produkte unterschiedlich mit dem Transportprotein von ToMV (30 kDa MP = Avr) interagieren (Weber et al., 2004). Aus diesem Grund wurden durch einen Restriktionsschnitt im Bereich zwischen der NBS- und der LRR-Region chimäre Austauschkonstrukte (A1 und A2) der Resistenzgene erstellt, um Unterschiede in der Pathogenerkennung untersuchen zu können. Mit den vier Konstrukten wurden sowohl MM-Tomaten- aus auch nn- und NN-Tabakpflanzen transformiert. Die Expression der Resistenzgenkonstrukte in MM- und nn-Linien führte nicht wie erwartet zur Resistenzvermittlung gegenüber ToMV. Allerdings zeigte sich in älteren infizierten nn-Transformanden eine spontane Bildung von Blattnekrosen, was auf eine verspätet einsetzende HR hinweist. Dies lässt sich erklären, indem man davon ausgeht, dass die Anwesenheit des Resistenzgenproduktes alleine nicht zur Er-kennung des viralen Transportproteins ausreicht, sondern dass andere pflanzliche Komponenten an diesem Prozess beteiligt sind (wie beschrieben i, For many organisms plants serve as a source of nutrients and energy, but because of their static location they are exposed to various harmful environmental influences. Due to this factor they have developed complex defence mechanisms e. g. for protection against pathogens. An important aspect of these defence mechanisms is the expression of intrinsic resistance genes (R) that detect pathogenic avirulence gene products (Avr) thereby causing a hypersensitive response (HR) in the infected cells and consequently inhibiting the systemic infection of the plant. In this work the resistance genes Tm-2 and Tm-2² of tomato were isolated, cloned and sequenced. The allelic R genes are members of the CC-NBS-LRR group of resistance genes, which is widely spread in plants, and differ only in four amino acids. This is surprising because using resistance breaking ToMV strains Weber et al. (2004) showed that both resistance gene products interact differently with the movement protein (30 kDa MP = Avr) of the virus. To gain further insight into this phenomenon of different pathogen detection, chimeric exchange constructs (A1 and A2) were designed through restriction in the region between the NBS and the LRR domain. These four constructs were used for transformation of MM tomatoes as well as NN and nn tobacco plants. The expression of the resistance gene constructs in MM an nn lines did not confer the expected resistance to ToMV. Nevertheless in older infected nn transformants a formation of spontaneous necrosis was observed, which indicates a delayed development of HR. One possible explanation could be that the presence of only the resistance gene product is not sufficient to detect the viral movement protein and that other host cellular components are involved in this process (as in the guard hypothesis by Dangl and Jones, 2001). This assumption is supported by our yeast two hybrid interaction experiments which showed that a direct interaction of Tm-2 and 30 kDa MP can be excluded. F more...
- Published
- 2008
6. Analyse von Pathogenresistenzmechanismen in Tomate (Solanum lycopersicum L.)
- Author
-
Gerhardts, Anja and Gerhardts, Anja
- Abstract
Pflanzen dienen vielen Lebensformen als Nahrungsquelle und Energielieferant und sind nicht zuletzt aufgrund ihrer Standortgebundenheit vielen schädigenden Umwelt-einflüssen ausgesetzt. Aufgrund dessen haben sie komplexe Abwehrmechanismen entwickelt, die sie beispielsweise vor dem Befall durch Pathogene schützen. Ein wichtiger Bestandteil dieser Abwehrmechanismen ist die Expression pflanzeneigener Resistenzgene (R), welche pathogene Avirulenzgenprodukte (Avr) erkennen, dadurch eine hypersensitive Reaktion (HR) in der Pflanzenzelle auslösen und somit eine systemische Infektion der Pflanze verhindern. Im Zuge dieser Arbeit wurden die Resistenzgene Tm-2 und Tm-2² aus Tomaten-pflanzen isoliert, kloniert und sequenziert. Die allelen R-Gene gehören zur Gruppe der CC-NBS-LRR-Resistenzgene, die im Pflanzenreich weit verbreitet ist, und unter-scheiden sich lediglich in vier Aminosäuren. Dies ist insofern erstaunlich, da durch Resistenz durchbrechende ToMV-Stämme gezeigt wurde, dass beide Resistenzgen-produkte unterschiedlich mit dem Transportprotein von ToMV (30 kDa MP = Avr) interagieren (Weber et al., 2004). Aus diesem Grund wurden durch einen Restriktionsschnitt im Bereich zwischen der NBS- und der LRR-Region chimäre Austauschkonstrukte (A1 und A2) der Resistenzgene erstellt, um Unterschiede in der Pathogenerkennung untersuchen zu können. Mit den vier Konstrukten wurden sowohl MM-Tomaten- aus auch nn- und NN-Tabakpflanzen transformiert. Die Expression der Resistenzgenkonstrukte in MM- und nn-Linien führte nicht wie erwartet zur Resistenzvermittlung gegenüber ToMV. Allerdings zeigte sich in älteren infizierten nn-Transformanden eine spontane Bildung von Blattnekrosen, was auf eine verspätet einsetzende HR hinweist. Dies lässt sich erklären, indem man davon ausgeht, dass die Anwesenheit des Resistenzgenproduktes alleine nicht zur Er-kennung des viralen Transportproteins ausreicht, sondern dass andere pflanzliche Komponenten an diesem Prozess beteiligt sind (wie beschrieben i, For many organisms plants serve as a source of nutrients and energy, but because of their static location they are exposed to various harmful environmental influences. Due to this factor they have developed complex defence mechanisms e. g. for protection against pathogens. An important aspect of these defence mechanisms is the expression of intrinsic resistance genes (R) that detect pathogenic avirulence gene products (Avr) thereby causing a hypersensitive response (HR) in the infected cells and consequently inhibiting the systemic infection of the plant. In this work the resistance genes Tm-2 and Tm-2² of tomato were isolated, cloned and sequenced. The allelic R genes are members of the CC-NBS-LRR group of resistance genes, which is widely spread in plants, and differ only in four amino acids. This is surprising because using resistance breaking ToMV strains Weber et al. (2004) showed that both resistance gene products interact differently with the movement protein (30 kDa MP = Avr) of the virus. To gain further insight into this phenomenon of different pathogen detection, chimeric exchange constructs (A1 and A2) were designed through restriction in the region between the NBS and the LRR domain. These four constructs were used for transformation of MM tomatoes as well as NN and nn tobacco plants. The expression of the resistance gene constructs in MM an nn lines did not confer the expected resistance to ToMV. Nevertheless in older infected nn transformants a formation of spontaneous necrosis was observed, which indicates a delayed development of HR. One possible explanation could be that the presence of only the resistance gene product is not sufficient to detect the viral movement protein and that other host cellular components are involved in this process (as in the guard hypothesis by Dangl and Jones, 2001). This assumption is supported by our yeast two hybrid interaction experiments which showed that a direct interaction of Tm-2 and 30 kDa MP can be excluded. F more...
- Published
- 2008
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.