163 results on '"Pancoast, A"'
Search Results
2. The Lick AGN Monitoring Project 2016: Velocity-Resolved H{\beta} Lags in Luminous Seyfert Galaxies
- Author
-
U, Vivian, Barth, Aaron J., Vogler, H. Alexander, Guo, Hengxiao, Treu, Tommaso, Bennert, Vardha N., Canalizo, Gabriela, Filippenko, Alexei V., Gates, Elinor, Hamann, Frederick, Joner, Michael D., Malkan, Matthew A., Pancoast, Anna, Williams, Peter R., Woo, Jong-Hak, Abolfathi, Bela, Abramson, L. E., Armen, Stephen F., Bae, Hyun-Jin, Bohn, Thomas, Boizelle, Benjamin D., Bostroem, Azalee, Brandel, Andrew, Brink, Thomas G., Channa, Sanyum, Cooper, M. C., Cosens, Maren, Donohue, Edward, Fillingham, Sean P., González-Buitrago, Diego, Halevi, Goni, Halle, Andrew, Hood, Carol E., Horne, Keith, Horst, J. Chuck, de Kouchkovsky, Maxime, Kuhn, Benjamin, Kumar, Sahana, Leonard, Douglas C., Loveland, Donald, Manzano-King, Christina, McHardy, Ian, Michel, Raúl, Olaes, Melanie Kae B., Park, Daeseong, Park, Songyoun, Pei, Liuyi, Ross, Timothy W., Runco, Jordan N., Samuel, Jenna, Sánchez, Javier, Scott, Bryan, Sexton, Remington O., Shin, Jaejin, Shivvers, Isaac, Spencer, Chance L., Stahl, Benjamin E., Stegman, Samantha, Stomberg, Isak, Valenti, Stefano, Villafaña, L., Walsh, Jonelle L., Yuk, Heechan, Zheng, WeiKang, U, Vivian, Barth, Aaron J., Vogler, H. Alexander, Guo, Hengxiao, Treu, Tommaso, Bennert, Vardha N., Canalizo, Gabriela, Filippenko, Alexei V., Gates, Elinor, Hamann, Frederick, Joner, Michael D., Malkan, Matthew A., Pancoast, Anna, Williams, Peter R., Woo, Jong-Hak, Abolfathi, Bela, Abramson, L. E., Armen, Stephen F., Bae, Hyun-Jin, Bohn, Thomas, Boizelle, Benjamin D., Bostroem, Azalee, Brandel, Andrew, Brink, Thomas G., Channa, Sanyum, Cooper, M. C., Cosens, Maren, Donohue, Edward, Fillingham, Sean P., González-Buitrago, Diego, Halevi, Goni, Halle, Andrew, Hood, Carol E., Horne, Keith, Horst, J. Chuck, de Kouchkovsky, Maxime, Kuhn, Benjamin, Kumar, Sahana, Leonard, Douglas C., Loveland, Donald, Manzano-King, Christina, McHardy, Ian, Michel, Raúl, Olaes, Melanie Kae B., Park, Daeseong, Park, Songyoun, Pei, Liuyi, Ross, Timothy W., Runco, Jordan N., Samuel, Jenna, Sánchez, Javier, Scott, Bryan, Sexton, Remington O., Shin, Jaejin, Shivvers, Isaac, Spencer, Chance L., Stahl, Benjamin E., Stegman, Samantha, Stomberg, Isak, Valenti, Stefano, Villafaña, L., Walsh, Jonelle L., Yuk, Heechan, and Zheng, WeiKang
- Abstract
We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3-m Shane telescope at Lick Observatory from April 2016 to May 2017. Targeting active galactic nuclei (AGN) with luminosities of {\lambda}L{\lambda} (5100 {\AA}) = 10^44 erg/s and predicted H{\beta} lags of 20-30 days or black hole masses of 10^7-10^8.5 Msun, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including H{\beta} emission-line light curves, integrated H{\beta} lag times (8-30 days) measured against V-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad H{\beta} components, and virial black hole mass estimates (10^7.1-10^8.1 Msun). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this dataset will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample., Comment: 34 pages, 14 figures, accepted for publication in ApJ
- Published
- 2021
- Full Text
- View/download PDF
3. The Lick AGN Monitoring Project 2016: Velocity-Resolved H{\beta} Lags in Luminous Seyfert Galaxies
- Author
-
U, Vivian, Barth, Aaron J., Vogler, H. Alexander, Guo, Hengxiao, Treu, Tommaso, Bennert, Vardha N., Canalizo, Gabriela, Filippenko, Alexei V., Gates, Elinor, Hamann, Frederick, Joner, Michael D., Malkan, Matthew A., Pancoast, Anna, Williams, Peter R., Woo, Jong-Hak, Abolfathi, Bela, Abramson, L. E., Armen, Stephen F., Bae, Hyun-Jin, Bohn, Thomas, Boizelle, Benjamin D., Bostroem, Azalee, Brandel, Andrew, Brink, Thomas G., Channa, Sanyum, Cooper, M. C., Cosens, Maren, Donohue, Edward, Fillingham, Sean P., González-Buitrago, Diego, Halevi, Goni, Halle, Andrew, Hood, Carol E., Horne, Keith, Horst, J. Chuck, de Kouchkovsky, Maxime, Kuhn, Benjamin, Kumar, Sahana, Leonard, Douglas C., Loveland, Donald, Manzano-King, Christina, McHardy, Ian, Michel, Raúl, Olaes, Melanie Kae B., Park, Daeseong, Park, Songyoun, Pei, Liuyi, Ross, Timothy W., Runco, Jordan N., Samuel, Jenna, Sánchez, Javier, Scott, Bryan, Sexton, Remington O., Shin, Jaejin, Shivvers, Isaac, Spencer, Chance L., Stahl, Benjamin E., Stegman, Samantha, Stomberg, Isak, Valenti, Stefano, Villafaña, L., Walsh, Jonelle L., Yuk, Heechan, Zheng, WeiKang, U, Vivian, Barth, Aaron J., Vogler, H. Alexander, Guo, Hengxiao, Treu, Tommaso, Bennert, Vardha N., Canalizo, Gabriela, Filippenko, Alexei V., Gates, Elinor, Hamann, Frederick, Joner, Michael D., Malkan, Matthew A., Pancoast, Anna, Williams, Peter R., Woo, Jong-Hak, Abolfathi, Bela, Abramson, L. E., Armen, Stephen F., Bae, Hyun-Jin, Bohn, Thomas, Boizelle, Benjamin D., Bostroem, Azalee, Brandel, Andrew, Brink, Thomas G., Channa, Sanyum, Cooper, M. C., Cosens, Maren, Donohue, Edward, Fillingham, Sean P., González-Buitrago, Diego, Halevi, Goni, Halle, Andrew, Hood, Carol E., Horne, Keith, Horst, J. Chuck, de Kouchkovsky, Maxime, Kuhn, Benjamin, Kumar, Sahana, Leonard, Douglas C., Loveland, Donald, Manzano-King, Christina, McHardy, Ian, Michel, Raúl, Olaes, Melanie Kae B., Park, Daeseong, Park, Songyoun, Pei, Liuyi, Ross, Timothy W., Runco, Jordan N., Samuel, Jenna, Sánchez, Javier, Scott, Bryan, Sexton, Remington O., Shin, Jaejin, Shivvers, Isaac, Spencer, Chance L., Stahl, Benjamin E., Stegman, Samantha, Stomberg, Isak, Valenti, Stefano, Villafaña, L., Walsh, Jonelle L., Yuk, Heechan, and Zheng, WeiKang
- Abstract
We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3-m Shane telescope at Lick Observatory from April 2016 to May 2017. Targeting active galactic nuclei (AGN) with luminosities of {\lambda}L{\lambda} (5100 {\AA}) = 10^44 erg/s and predicted H{\beta} lags of 20-30 days or black hole masses of 10^7-10^8.5 Msun, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including H{\beta} emission-line light curves, integrated H{\beta} lag times (8-30 days) measured against V-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad H{\beta} components, and virial black hole mass estimates (10^7.1-10^8.1 Msun). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this dataset will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample., Comment: 34 pages, 14 figures, accepted for publication in ApJ
- Published
- 2021
- Full Text
- View/download PDF
4. Space Telescope and Optical Reverberation Mapping Project. IX. Velocity-Delay Maps for Broad Emission Lines in NGC 5548
- Author
-
Horne, Keith, Rosa, G. De, Peterson, B. M., Barth, A. J., Ely, J., Fausnaugh, M. M., Kriss, G. A., Pei, L., Bentz, M. C., Cackett, E. M., Edelson, R., Eracleous, M., Goad, M. R., Grier, C. J., Kaastra, J., Kochanek, C. S., Krongold, Y., Mathur, S., Netzer, H., Proga, D., Tejos, N., Vestergaard, M., Villforth, C., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Bonta, E. Dalla, Deason, A. J., Dehghanian, M., Lorenzo-Caceres, A. De, Denney, K. D., Dietrich, M., Done, C., Efimova, N. V., Evans, P. A., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Korista, K. T., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Malkan, M. A., Manne-Nicholas, E. R., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Muller-Sanchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Pancoast, A., Papadakis, I., Parks, J. R., Penny, M. T., Pizzella, A., Pogge, R. W., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnuelle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Treu, T., Turner, C. S., Uttley, P., Van Saders, J., Vican, L., Villanueva, S., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., Zu, Y., Horne, Keith, Rosa, G. De, Peterson, B. M., Barth, A. J., Ely, J., Fausnaugh, M. M., Kriss, G. A., Pei, L., Bentz, M. C., Cackett, E. M., Edelson, R., Eracleous, M., Goad, M. R., Grier, C. J., Kaastra, J., Kochanek, C. S., Krongold, Y., Mathur, S., Netzer, H., Proga, D., Tejos, N., Vestergaard, M., Villforth, C., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Bonta, E. Dalla, Deason, A. J., Dehghanian, M., Lorenzo-Caceres, A. De, Denney, K. D., Dietrich, M., Done, C., Efimova, N. V., Evans, P. A., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Korista, K. T., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Malkan, M. A., Manne-Nicholas, E. R., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Muller-Sanchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Pancoast, A., Papadakis, I., Parks, J. R., Penny, M. T., Pizzella, A., Pogge, R. W., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnuelle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Treu, T., Turner, C. S., Uttley, P., Van Saders, J., Vican, L., Villanueva, S., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
In this contribution, we achieve the primary goal of the active galactic nucleus (AGN) STORM campaign by recovering velocity-delay maps for the prominent broad emission lines (Ly alpha, C IV, He II, and H beta) in the spectrum of NGC 5548. These are the most detailed velocity-delay maps ever obtained for an AGN, providing unprecedented information on the geometry, ionization structure, and kinematics of the broad-line region. Virial envelopes enclosing the emission-line responses show that the reverberating gas is bound to the black hole. A stratified ionization structure is evident. The He ii response inside 5-10 lt-day has a broad single-peaked velocity profile. The Ly alpha, C IV, and H beta responses extend from inside 2 to outside 20 lt-day, with double peaks at 2500 km s(-1) in the 10-20 lt-day delay range. An incomplete ellipse in the velocity-delay plane is evident in H beta. We interpret the maps in terms of a Keplerian disk with a well-defined outer rim at R = 20 lt-day. The far-side response is weaker than that from the near side. The line-center delay tau = (R/c)(1 - sin i) approximate to 5 days gives the inclination i approximate to 45 degrees. The inferred black hole mass is (BH) 7 x 10(7) M-circle dot. In addition to reverberations, the fit residuals confirm that emission-line fluxes are depressed during the "BLR Holiday" identified in previous work. Moreover, a helical "Barber-Pole" pattern, with stripes moving from red to blue across the C IV and Ly alpha line profiles, suggests azimuthal structure rotating with a 2 yr period that may represent precession or orbital motion of inner-disk structures casting shadows on the emission-line region farther out.
- Published
- 2021
5. Stability of the Broad-line Region Geometry and Dynamics in Arp 151 over Seven Years
- Author
-
Pancoast, A, Pancoast, A, Barth, AJ, Horne, K, Treu, T, Brewer, BJ, Bennert, VN, Canalizo, G, Gates, EL, Li, W, Malkan, MA, Sand, D, Schmidt, T, Valenti, S, Woo, JH, Clubb, KI, Cooper, MC, Crawford, SM, Hönig, SF, Joner, MD, Kandrashoff, MT, Lazarova, M, Nierenberg, AM, Romero-Colmenero, E, Son, D, Tollerud, E, Walsh, JL, Winkler, H, Pancoast, A, Pancoast, A, Barth, AJ, Horne, K, Treu, T, Brewer, BJ, Bennert, VN, Canalizo, G, Gates, EL, Li, W, Malkan, MA, Sand, D, Schmidt, T, Valenti, S, Woo, JH, Clubb, KI, Cooper, MC, Crawford, SM, Hönig, SF, Joner, MD, Kandrashoff, MT, Lazarova, M, Nierenberg, AM, Romero-Colmenero, E, Son, D, Tollerud, E, Walsh, JL, and Winkler, H
- Abstract
The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning 2008-2015. We present modeling of these velocity-resolved reverberation mapping data sets using a geometric and dynamical model for the broad-line region (BLR). By modeling each of the three data sets independently, we infer the evolution of the BLR structure in Arp 151 over a total of 7 yr and constrain the systematic uncertainties in nonvarying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of ∼2. The dynamics of the BLR are dominated by inflow, and the inferred black hole mass is consistent for the three data sets, despite the increase in BLR size. Combining the inference for the three data sets yields a black hole mass and statistical uncertainty of log10(/) = with a standard deviation in individual measurements of 0.13 dex.
- Published
- 2018
6. Stability of the Broad-line Region Geometry and Dynamics in Arp 151 over Seven Years
- Author
-
Pancoast, A, Pancoast, A, Barth, AJ, Horne, K, Treu, T, Brewer, BJ, Bennert, VN, Canalizo, G, Gates, EL, Li, W, Malkan, MA, Sand, D, Schmidt, T, Valenti, S, Woo, JH, Clubb, KI, Cooper, MC, Crawford, SM, Hönig, SF, Joner, MD, Kandrashoff, MT, Lazarova, M, Nierenberg, AM, Romero-Colmenero, E, Son, D, Tollerud, E, Walsh, JL, Winkler, H, Pancoast, A, Pancoast, A, Barth, AJ, Horne, K, Treu, T, Brewer, BJ, Bennert, VN, Canalizo, G, Gates, EL, Li, W, Malkan, MA, Sand, D, Schmidt, T, Valenti, S, Woo, JH, Clubb, KI, Cooper, MC, Crawford, SM, Hönig, SF, Joner, MD, Kandrashoff, MT, Lazarova, M, Nierenberg, AM, Romero-Colmenero, E, Son, D, Tollerud, E, Walsh, JL, and Winkler, H
- Abstract
The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning 2008-2015. We present modeling of these velocity-resolved reverberation mapping data sets using a geometric and dynamical model for the broad-line region (BLR). By modeling each of the three data sets independently, we infer the evolution of the BLR structure in Arp 151 over a total of 7 yr and constrain the systematic uncertainties in nonvarying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of ∼2. The dynamics of the BLR are dominated by inflow, and the inferred black hole mass is consistent for the three data sets, despite the increase in BLR size. Combining the inference for the three data sets yields a black hole mass and statistical uncertainty of log10(/) = with a standard deviation in individual measurements of 0.13 dex.
- Published
- 2018
7. Space Telescope and Optical Reverberation Mapping Project. IX. Velocity-Delay Maps for Broad Emission Lines in NGC 5548
- Author
-
Horne, Keith, De Rosa, G., Peterson, B. M., Barth, A. J., Ely, J., Fausnaugh, M. M., Kriss, G. A., Pei, L., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T G., Bennert, V. N., Bentz, M. C., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Bonta, E. Dalla, Deason, A. J., Dehghanian, M., De Lorenzo-Caceres, A., Denney, K. D., Dietrich, M., Done, C., Edelson, R., Efimova, N. V., Eracleous, M., Evans, P. A., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Goad, M. R., Gonzalez, L., Gorjian, V., Greene, J. E., Grier, C. J., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaastra, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Kochanek, C. S., Korista, K. T., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Malkan, M. A., Manne-Nicholas, E. R., Mathur, S., Mauerhan, J. C., McGurk, R., Hardy, I. M. Mc, Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Mueller-Sanchez, F., Nazarov, S. V., Netzer, H., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Pancoast, A., Papadakis, I., Parks, J. R., Penny, M. T., Pizzella, A., Pogge, R. W., Poleski, R., Pott, J. -U., Proga, D., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnuelle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Strauss, M. A., Sung, H. -I., Tayar, J., Teems, K. G., Tejos, N., Treu, T., Turner, C. S., Uttley, P., Van Saders, J ., Vestergaard, M., Vican, L., Villanueva Jr, S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zakamska, N. L., Zheng, W., Zhu, W., Zu, Y., Horne, Keith, De Rosa, G., Peterson, B. M., Barth, A. J., Ely, J., Fausnaugh, M. M., Kriss, G. A., Pei, L., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T G., Bennert, V. N., Bentz, M. C., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Bonta, E. Dalla, Deason, A. J., Dehghanian, M., De Lorenzo-Caceres, A., Denney, K. D., Dietrich, M., Done, C., Edelson, R., Efimova, N. V., Eracleous, M., Evans, P. A., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Goad, M. R., Gonzalez, L., Gorjian, V., Greene, J. E., Grier, C. J., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaastra, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Kochanek, C. S., Korista, K. T., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Malkan, M. A., Manne-Nicholas, E. R., Mathur, S., Mauerhan, J. C., McGurk, R., Hardy, I. M. Mc, Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Mueller-Sanchez, F., Nazarov, S. V., Netzer, H., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Pancoast, A., Papadakis, I., Parks, J. R., Penny, M. T., Pizzella, A., Pogge, R. W., Poleski, R., Pott, J. -U., Proga, D., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnuelle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Strauss, M. A., Sung, H. -I., Tayar, J., Teems, K. G., Tejos, N., Treu, T., Turner, C. S., Uttley, P., Van Saders, J ., Vestergaard, M., Vican, L., Villanueva Jr, S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zakamska, N. L., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
We report velocity-delay maps for prominent broad emission lines, Ly_alpha, CIV, HeII and H_beta, in the spectrum of NGC5548. The emission-line responses inhabit the interior of a virial envelope. The velocity-delay maps reveal stratified ionization structure. The HeII response inside 5-10 light-days has a broad single-peaked velocity profile. The Ly_alpha, CIV, and H_beta responses peak inside 10 light-days, extend outside 20 light-days, and exhibit a velocity profile with two peaks separated by 5000 km/s in the 10 to 20 light-day delay range. The velocity-delay maps show that the M-shaped lag vs velocity structure found in previous cross-correlation analysis is the signature of a Keplerian disk with a well-defined outer edge at R=20 light-days. The outer wings of the M arise from the virial envelope, and the U-shaped interior of the M is the lower half of an ellipse in the velocity-delay plane. The far-side response is weaker than that from the near side, so that we see clearly the lower half, but only faintly the upper half, of the velocity--delay ellipse. The delay tau=(R/c)(1-sin(i))=5 light-days at line center is from the near edge of the inclined ring, giving the inclination i=45 deg. A black hole mass of M=7x10^7 Msun is consistent with the velocity-delay structure. A barber-pole pattern with stripes moving from red to blue across the CIV and possibly Ly_alpha line profiles suggests the presence of azimuthal structure rotating around the far side of the broad-line region and may be the signature of precession or orbital motion of structures in the inner disk. Further HST observations of NGC 5548 over a multi-year timespan but with a cadence of perhaps 10 days rather than 1 day could help to clarify the nature of this new AGN phenomenon., Comment: 19 pages, 9 figures, ApJ in press
- Published
- 2020
- Full Text
- View/download PDF
8. Space Telescope and Optical Reverberation Mapping Project. XII. Broad-Line Region Modeling of NGC 5548
- Author
-
Williams, P. R., Pancoast, A., Treu, T., Brewer, B. J., Peterson, B. M., Barth, A. J., Malkan, M. A., De Rosa, G., Horne, Keith, Kriss, G. A., Arav, N., Bentz, M. C., Cackett, E. M., Bontà, E. Dalla, Dehghanian, M., Done, C., Ferland, G. J., Grier, C. J., Kaastra, J., Kara, E., Kochanek, C. S., Mathur, S., Mehdipour, M., Pogge, R. W., Proga, D., Vestergaard, M., Waters, T., Adams, S. M., Anderson, M. D., Arévalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Cáceres, A., Denney, K. D., Dietrich, M., Edelson, R., Efimova, N. V., Ely, J., Evans, P. A., Fausnaugh, M. M., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Knigge, C., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, Manne-Nicholas, E. R., MacInnis, F., Mauerhan, J. C., McGurk, R., Hardy, I. M. Mc, Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Müller-Sánchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Papadakis, I., Parks, J. R., Pei, L., Penny, M. T., Pizzella, A., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Tejos, N., Turner, C. S., Uttley, P., Van Saders, J., Vaughan, S. A., Vican, L., Villanueva Jr., S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., Zu, Y., Williams, P. R., Pancoast, A., Treu, T., Brewer, B. J., Peterson, B. M., Barth, A. J., Malkan, M. A., De Rosa, G., Horne, Keith, Kriss, G. A., Arav, N., Bentz, M. C., Cackett, E. M., Bontà, E. Dalla, Dehghanian, M., Done, C., Ferland, G. J., Grier, C. J., Kaastra, J., Kara, E., Kochanek, C. S., Mathur, S., Mehdipour, M., Pogge, R. W., Proga, D., Vestergaard, M., Waters, T., Adams, S. M., Anderson, M. D., Arévalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Cáceres, A., Denney, K. D., Dietrich, M., Edelson, R., Efimova, N. V., Ely, J., Evans, P. A., Fausnaugh, M. M., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Knigge, C., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, Manne-Nicholas, E. R., MacInnis, F., Mauerhan, J. C., McGurk, R., Hardy, I. M. Mc, Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Müller-Sánchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Papadakis, I., Parks, J. R., Pei, L., Penny, M. T., Pizzella, A., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Tejos, N., Turner, C. S., Uttley, P., Van Saders, J., Vaughan, S. A., Vican, L., Villanueva Jr., S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
We present geometric and dynamical modeling of the broad line region for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The dataset includes photometric and spectroscopic monitoring in the optical and ultraviolet, covering the H$\beta$, C IV, and Ly$\alpha$ broad emission lines. We find an extended disk-like H$\beta$ BLR with a mixture of near-circular and outflowing gas trajectories, while the C IV and Ly$\alpha$ BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with C IV and Ly$\alpha$ emission arising at smaller radii than the H$\beta$ emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of $\log_{10}(M_{\rm BH}/M_\odot) = 7.64^{+0.21}_{-0.18}$. We examine the effect of using the $V$ band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV-optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that the $V$ band is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the H$\beta$ results to similar models of data obtained in 2008 when the AGN was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remain unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole., Comment: 26 pages, 19 figures, 1 table, accepted for publication in ApJ
- Published
- 2020
- Full Text
- View/download PDF
9. Space Telescope and Optical Reverberation Mapping Project. IX. Velocity-Delay Maps for Broad Emission Lines in NGC 5548
- Author
-
Horne, Keith, De Rosa, G., Peterson, B. M., Barth, A. J., Ely, J., Fausnaugh, M. M., Kriss, G. A., Pei, L., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T G., Bennert, V. N., Bentz, M. C., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Bonta, E. Dalla, Deason, A. J., Dehghanian, M., De Lorenzo-Caceres, A., Denney, K. D., Dietrich, M., Done, C., Edelson, R., Efimova, N. V., Eracleous, M., Evans, P. A., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Goad, M. R., Gonzalez, L., Gorjian, V., Greene, J. E., Grier, C. J., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaastra, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Kochanek, C. S., Korista, K. T., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Malkan, M. A., Manne-Nicholas, E. R., Mathur, S., Mauerhan, J. C., McGurk, R., Hardy, I. M. Mc, Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Mueller-Sanchez, F., Nazarov, S. V., Netzer, H., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Pancoast, A., Papadakis, I., Parks, J. R., Penny, M. T., Pizzella, A., Pogge, R. W., Poleski, R., Pott, J. -U., Proga, D., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnuelle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Strauss, M. A., Sung, H. -I., Tayar, J., Teems, K. G., Tejos, N., Treu, T., Turner, C. S., Uttley, P., Van Saders, J ., Vestergaard, M., Vican, L., Villanueva Jr, S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zakamska, N. L., Zheng, W., Zhu, W., Zu, Y., Horne, Keith, De Rosa, G., Peterson, B. M., Barth, A. J., Ely, J., Fausnaugh, M. M., Kriss, G. A., Pei, L., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T G., Bennert, V. N., Bentz, M. C., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Bonta, E. Dalla, Deason, A. J., Dehghanian, M., De Lorenzo-Caceres, A., Denney, K. D., Dietrich, M., Done, C., Edelson, R., Efimova, N. V., Eracleous, M., Evans, P. A., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Goad, M. R., Gonzalez, L., Gorjian, V., Greene, J. E., Grier, C. J., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaastra, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Kochanek, C. S., Korista, K. T., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Malkan, M. A., Manne-Nicholas, E. R., Mathur, S., Mauerhan, J. C., McGurk, R., Hardy, I. M. Mc, Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Mueller-Sanchez, F., Nazarov, S. V., Netzer, H., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Pancoast, A., Papadakis, I., Parks, J. R., Penny, M. T., Pizzella, A., Pogge, R. W., Poleski, R., Pott, J. -U., Proga, D., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnuelle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Strauss, M. A., Sung, H. -I., Tayar, J., Teems, K. G., Tejos, N., Treu, T., Turner, C. S., Uttley, P., Van Saders, J ., Vestergaard, M., Vican, L., Villanueva Jr, S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zakamska, N. L., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
We report velocity-delay maps for prominent broad emission lines, Ly_alpha, CIV, HeII and H_beta, in the spectrum of NGC5548. The emission-line responses inhabit the interior of a virial envelope. The velocity-delay maps reveal stratified ionization structure. The HeII response inside 5-10 light-days has a broad single-peaked velocity profile. The Ly_alpha, CIV, and H_beta responses peak inside 10 light-days, extend outside 20 light-days, and exhibit a velocity profile with two peaks separated by 5000 km/s in the 10 to 20 light-day delay range. The velocity-delay maps show that the M-shaped lag vs velocity structure found in previous cross-correlation analysis is the signature of a Keplerian disk with a well-defined outer edge at R=20 light-days. The outer wings of the M arise from the virial envelope, and the U-shaped interior of the M is the lower half of an ellipse in the velocity-delay plane. The far-side response is weaker than that from the near side, so that we see clearly the lower half, but only faintly the upper half, of the velocity--delay ellipse. The delay tau=(R/c)(1-sin(i))=5 light-days at line center is from the near edge of the inclined ring, giving the inclination i=45 deg. A black hole mass of M=7x10^7 Msun is consistent with the velocity-delay structure. A barber-pole pattern with stripes moving from red to blue across the CIV and possibly Ly_alpha line profiles suggests the presence of azimuthal structure rotating around the far side of the broad-line region and may be the signature of precession or orbital motion of structures in the inner disk. Further HST observations of NGC 5548 over a multi-year timespan but with a cadence of perhaps 10 days rather than 1 day could help to clarify the nature of this new AGN phenomenon., Comment: 19 pages, 9 figures, ApJ in press
- Published
- 2020
- Full Text
- View/download PDF
10. Space Telescope and Optical Reverberation Mapping Project. XII. Broad-line Region Modeling of NGC 5548
- Author
-
Williams, P. R., Pancoast, A., Treu, T., Brewer, B. J., Peterson, B. M., Barth, A. J., Malkan, M. A., De Rosa, G., Horne, Keith, Kriss, G. A., Arav, N., Bentz, M. C., Cackett, E. M., Dalla Bonta, E., Dehghanian, M., Done, C., Ferland, G. J., Grier, C. J., Kaastra, J., Kara, E., Kochanek, C. S., Mathur, S., Mehdipour, M., Pogge, R. W., Proga, D., Vestergaard, M., Waters, T., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Caceres, A., Denney, K. D., Dietrich, M., Edelson, R., Efimova, N. V., Ely, J., Evans, P. A., Fausnaugh, M. M., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Knigge, C., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Manne-Nicholas, E. R., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Muller-Sanchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Papadakis, I., Parks, J. R., Pei, L., Penny, M. T., Pizzella, A., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Tejos, N., Turner, C. S., Uttley, P., Van Saders, J., Vaughan, S. A., Vican, L., Villanueva, S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., Zu, Y., Williams, P. R., Pancoast, A., Treu, T., Brewer, B. J., Peterson, B. M., Barth, A. J., Malkan, M. A., De Rosa, G., Horne, Keith, Kriss, G. A., Arav, N., Bentz, M. C., Cackett, E. M., Dalla Bonta, E., Dehghanian, M., Done, C., Ferland, G. J., Grier, C. J., Kaastra, J., Kara, E., Kochanek, C. S., Mathur, S., Mehdipour, M., Pogge, R. W., Proga, D., Vestergaard, M., Waters, T., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Caceres, A., Denney, K. D., Dietrich, M., Edelson, R., Efimova, N. V., Ely, J., Evans, P. A., Fausnaugh, M. M., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Knigge, C., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Manne-Nicholas, E. R., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Muller-Sanchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Papadakis, I., Parks, J. R., Pei, L., Penny, M. T., Pizzella, A., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Tejos, N., Turner, C. S., Uttley, P., Van Saders, J., Vaughan, S. A., Vican, L., Villanueva, S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
We present geometric and dynamical modeling of the broad line region (BLR) for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The data set includes photometric and spectroscopic monitoring in the optical and ultraviolet, covering the H beta, Civ, and Ly alpha broad emission lines. We find an extended disk-like H beta BLR with a mixture of near-circular and outflowing gas trajectories, while the Civand Ly alpha BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with Civand Ly alpha emission arising at smaller radii than the H beta emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of log(10) (M-BH/M-circle dot) = 7.64(-0.18)(+0.21). We examine the effect of using the V band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV-optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that theVband is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the H beta results to similar models of data obtained in 2008 when the active galactic nucleus was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remained unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole.
- Published
- 2020
11. Space Telescope and Optical Reverberation Mapping Project. XII. Broad-line Region Modeling of NGC 5548
- Author
-
Williams, P. R., Pancoast, A., Treu, T., Brewer, B. J., Peterson, B. M., Barth, A. J., Malkan, M. A., De Rosa, G., Horne, Keith, Kriss, G. A., Arav, N., Bentz, M. C., Cackett, E. M., Dalla Bonta, E., Dehghanian, M., Done, C., Ferland, G. J., Grier, C. J., Kaastra, J., Kara, E., Kochanek, C. S., Mathur, S., Mehdipour, M., Pogge, R. W., Proga, D., Vestergaard, M., Waters, T., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Caceres, A., Denney, K. D., Dietrich, M., Edelson, R., Efimova, N. V., Ely, J., Evans, P. A., Fausnaugh, M. M., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Knigge, C., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Manne-Nicholas, E. R., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Muller-Sanchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Papadakis, I., Parks, J. R., Pei, L., Penny, M. T., Pizzella, A., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Tejos, N., Turner, C. S., Uttley, P., Van Saders, J., Vaughan, S. A., Vican, L., Villanueva, S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., Zu, Y., Williams, P. R., Pancoast, A., Treu, T., Brewer, B. J., Peterson, B. M., Barth, A. J., Malkan, M. A., De Rosa, G., Horne, Keith, Kriss, G. A., Arav, N., Bentz, M. C., Cackett, E. M., Dalla Bonta, E., Dehghanian, M., Done, C., Ferland, G. J., Grier, C. J., Kaastra, J., Kara, E., Kochanek, C. S., Mathur, S., Mehdipour, M., Pogge, R. W., Proga, D., Vestergaard, M., Waters, T., Adams, S. M., Anderson, M. D., Arevalo, P., Beatty, T. G., Bennert, V. N., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Caceres, A., Denney, K. D., Dietrich, M., Edelson, R., Efimova, N. V., Ely, J., Evans, P. A., Fausnaugh, M. M., Filippenko, A. V., Flatland, K., Fox, O. D., Gardner, E., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Greene, J. E., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaspi, S., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Knigge, C., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, MacInnis, F., Manne-Nicholas, E. R., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Muller-Sanchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Papadakis, I., Parks, J. R., Pei, L., Penny, M. T., Pizzella, A., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Tejos, N., Turner, C. S., Uttley, P., Van Saders, J., Vaughan, S. A., Vican, L., Villanueva, S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
We present geometric and dynamical modeling of the broad line region (BLR) for the multi-wavelength reverberation mapping campaign focused on NGC 5548 in 2014. The data set includes photometric and spectroscopic monitoring in the optical and ultraviolet, covering the H beta, Civ, and Ly alpha broad emission lines. We find an extended disk-like H beta BLR with a mixture of near-circular and outflowing gas trajectories, while the Civand Ly alpha BLRs are much less extended and resemble shell-like structures. There is clear radial structure in the BLR, with Civand Ly alpha emission arising at smaller radii than the H beta emission. Using the three lines, we make three independent black hole mass measurements, all of which are consistent. Combining these results gives a joint inference of log(10) (M-BH/M-circle dot) = 7.64(-0.18)(+0.21). We examine the effect of using the V band instead of the UV continuum light curve on the results and find a size difference that is consistent with the measured UV-optical time lag, but the other structural and kinematic parameters remain unchanged, suggesting that theVband is a suitable proxy for the ionizing continuum when exploring the BLR structure and kinematics. Finally, we compare the H beta results to similar models of data obtained in 2008 when the active galactic nucleus was at a lower luminosity state. We find that the size of the emitting region increased during this time period, but the geometry and black hole mass remained unchanged, which confirms that the BLR kinematics suitably gauge the gravitational field of the central black hole.
- Published
- 2020
12. Modelling the AGN broad line region using single-epoch spectra - I. The test case of Arp 151
- Author
-
Raimundo, SI, Raimundo, SI, Pancoast, A, Vestergaard, M, Goad, MR, Barth, AJ, Raimundo, SI, Raimundo, SI, Pancoast, A, Vestergaard, M, Goad, MR, and Barth, AJ
- Abstract
We show that individual (single-epoch) spectra of active galactic nuclei (AGNs) can constrain some of the geometry and dynamics of the AGN broad line region. Studies of the cosmic influence of supermassive black holes are limited by the current large uncertainties in the determination of black hole masses. One dominant limitation is the unknown geometry, dynamics, and line-of-sight inclination of the broad line region, used to probe the central black hole mass. Recent progress has been made to constrain the spatial and kinematic structure of the broad line region using dynamical modelling of AGN monitoring data and an underlying physical model for the broad line region. In this work we test the ability of a modified version of this dynamical modelling code to constrain the broad line region structure using single-epoch spectra.We test our modelling code on single-epoch spectra of nearby Arp 151 by comparing our results with those obtained with monitoring data of this same object. We find that a significant fraction of the broad line region parameters can indeed be adequately constrained, with uncertainties that are comparable to, or at most a factor of approximately a few higher than those obtained from modelling of monitoring data. Considering the wealth of available single-epoch spectroscopic observations, this method is promising for establishing the overall AGN population trends in the geometry and dynamics of the broad line region. This method can be applied to spectra of AGNs at low and high redshift making it valuable for studies of cosmological black hole and AGN evolution.
- Published
- 2019
13. Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum
- Author
-
Kriss, GA, Kriss, GA, De Rosa, G, Ely, J, Peterson, BM, Kaastra, J, Mehdipour, M, Ferland, GJ, Dehghanian, M, Mathur, S, Edelson, R, Korista, KT, Arav, N, Barth, AJ, Bentz, MC, Brandt, WN, Crenshaw, DM, Dalla Bontà, E, Denney, KD, Done, C, Eracleous, M, Fausnaugh, MM, Gardner, E, Goad, MR, Grier, CJ, Horne, K, Kochanek, CS, McHardy, IM, Netzer, H, Pancoast, A, Pei, L, Pogge, RW, Proga, D, Silva, C, Tejos, N, Vestergaard, M, Adams, SM, Anderson, MD, Arévalo, P, Beatty, TG, Behar, E, Bennert, VN, Bianchi, S, Bigley, A, Bisogni, S, Boissay-Malaquin, R, Borman, GA, Bottorff, MC, Breeveld, AA, Brotherton, M, Brown, JE, Brown, JS, Cackett, EM, Canalizo, G, Cappi, M, Carini, MT, Clubb, KI, Comerford, JM, Coker, CT, Corsini, EM, Costantini, E, Croft, S, Croxall, KV, Deason, AJ, De Lorenzo-Cáceres, A, De Marco, B, Dietrich, M, Di Gesu, L, Ebrero, J, Evans, PA, Filippenko, AV, Flatland, K, Gates, EL, Gehrels, N, Geier, S, Gelbord, JM, Gonzalez, L, Gorjian, V, Grupe, D, Gupta, A, Hall, PB, Henderson, CB, Hicks, S, Holmbeck, E, Holoien, TWS, Hutchison, TA, Im, M, Jensen, JJ, Johnson, CA, Joner, MD, Kaspi, S, Kelly, BC, Kelly, PL, Kennea, JA, Kim, M, Kim, SC, Kim, SY, King, A, Klimanov, SA, Krongold, Y, Lau, MW, Kriss, GA, Kriss, GA, De Rosa, G, Ely, J, Peterson, BM, Kaastra, J, Mehdipour, M, Ferland, GJ, Dehghanian, M, Mathur, S, Edelson, R, Korista, KT, Arav, N, Barth, AJ, Bentz, MC, Brandt, WN, Crenshaw, DM, Dalla Bontà, E, Denney, KD, Done, C, Eracleous, M, Fausnaugh, MM, Gardner, E, Goad, MR, Grier, CJ, Horne, K, Kochanek, CS, McHardy, IM, Netzer, H, Pancoast, A, Pei, L, Pogge, RW, Proga, D, Silva, C, Tejos, N, Vestergaard, M, Adams, SM, Anderson, MD, Arévalo, P, Beatty, TG, Behar, E, Bennert, VN, Bianchi, S, Bigley, A, Bisogni, S, Boissay-Malaquin, R, Borman, GA, Bottorff, MC, Breeveld, AA, Brotherton, M, Brown, JE, Brown, JS, Cackett, EM, Canalizo, G, Cappi, M, Carini, MT, Clubb, KI, Comerford, JM, Coker, CT, Corsini, EM, Costantini, E, Croft, S, Croxall, KV, Deason, AJ, De Lorenzo-Cáceres, A, De Marco, B, Dietrich, M, Di Gesu, L, Ebrero, J, Evans, PA, Filippenko, AV, Flatland, K, Gates, EL, Gehrels, N, Geier, S, Gelbord, JM, Gonzalez, L, Gorjian, V, Grupe, D, Gupta, A, Hall, PB, Henderson, CB, Hicks, S, Holmbeck, E, Holoien, TWS, Hutchison, TA, Im, M, Jensen, JJ, Johnson, CA, Joner, MD, Kaspi, S, Kelly, BC, Kelly, PL, Kennea, JA, Kim, M, Kim, SC, Kim, SY, King, A, Klimanov, SA, Krongold, Y, and Lau, MW
- Abstract
We model the ultraviolet spectra of the Seyfert 1 galaxy NGC 5548 obtained with the Hubble Space Telescope during the 6 month reverberation mapping campaign in 2014. Our model of the emission from NGC 5548 corrects for overlying absorption and deblends the individual emission lines. Using the modeled spectra, we measure the response to continuum variations for the deblended and absorption-corrected individual broad emission lines, the velocity-dependent profiles of Ly and C iv, and the narrow and broad intrinsic absorption features. We find that the time lags for the corrected emission lines are comparable to those for the original data. The velocity-binned lag profiles of Ly and C iv have a double-peaked structure indicative of a truncated Keplerian disk. The narrow absorption lines show a delayed response to continuum variations corresponding to recombination in gas with a density of ∼105 cm-3. The high-ionization narrow absorption lines decorrelate from continuum variations during the same period as the broad emission lines. Analyzing the response of these absorption lines during this period shows that the ionizing flux is diminished in strength relative to the far-ultraviolet continuum. The broad absorption lines associated with the X-ray obscurer decrease in strength during this same time interval. The appearance of X-ray obscuration in ∼2012 corresponds with an increase in the luminosity of NGC 5548 following an extended low state. We suggest that the obscurer is a disk wind triggered by the brightening of NGC 5548 following the decrease in size of the broad-line region during the preceding low-luminosity state.
- Published
- 2019
14. Do Reverberation Mapping Analyses Provide an Accurate Picture of the Broad Line Region?
- Author
-
Mangham, S. W., Knigge, C., Williams, P., Horne, Keith, Pancoast, A., Matthews, J. H., Long, K. S., Sim, S. A., Higginbottom, N., Mangham, S. W., Knigge, C., Williams, P., Horne, Keith, Pancoast, A., Matthews, J. H., Long, K. S., Sim, S. A., and Higginbottom, N.
- Abstract
Reverberation mapping (RM) is a powerful approach for determining the nature of the broad-line region (BLR) in active galactic nuclei. However, inferring physical BLR properties from an observed spectroscopic time series is a difficult inverse problem. Here, we present a blind test of two widely used RM methods: MEMEcho (developed by Horne) and CARAMEL (developed by Pancoast and collaborators). The test data are simulated spectroscopic time series that track the H$\alpha$ emission line response to an empirical continuum light curve. The underlying BLR model is a rotating, biconical accretion disc wind, and the synthetic spectra are generated via self-consistent ionization and radiative transfer simulations. We generate two mock data sets, representing Seyfert galaxies and QSOs. The Seyfert model produces a largely *negative* response, which neither method can recover. However, both fail $``gracefully''$, neither generating spurious results. For the QSO model both CARAMEL and expert interpretation of MEMEcho's output both capture the broadly annular, rotation-dominated nature of the line-forming region, though MEMEcho analysis overestimates its size by 50%, but CARAMEL is unable to distinguish between additional inflow and outflow components. Despite fitting individual spectra well, the CARAMEL velocity-delay maps and RMS line profiles are strongly inconsistent with the input data. Finally, since the H$\alpha$ line-forming region is rotation dominated, neither method recovers the disc wind nature of the underlying BLR model. Thus considerable care is required when interpreting the results of RM analyses in terms of physical models., Comment: 22 pages, 24 figures
- Published
- 2019
- Full Text
- View/download PDF
15. Modelling the AGN broad line region using single-epoch spectra I. The test case of Arp 151
- Author
-
Raimundo, S. I., Pancoast, A., Vestergaard, M., Goad, M. R., Barth, A. J., Raimundo, S. I., Pancoast, A., Vestergaard, M., Goad, M. R., and Barth, A. J.
- Abstract
We show that individual (single-epoch) spectra of AGN can constrain some of the geometry and dynamics of the AGN broad line region. Studies of the cosmic influence of supermassive black holes are limited by the current large uncertainties in the determination of black hole masses. One dominant limitation is the unknown geometry, dynamics and line-of-sight inclination of the broad line region, used to probe the central black hole mass. Recent progress has been made to constrain the spatial and kinematic structure of the broad line region using dynamical modelling of AGN monitoring data and an underlying physical model for the broad line region. In this work we test the ability of a modified version of this dynamical modelling code to constrain the broad line region structure using single-epoch spectra. We test our modelling code on single-epoch spectra of nearby Arp 151 by comparing our results with those obtained with monitoring data of this same object. We find that a significant fraction of the broad line region parameters can indeed be adequately constrained, with uncertainties that are comparable to, or at most a factor of ~ a few higher than those obtained from modelling of monitoring data. Considering the wealth of available single-epoch spectroscopic observations, this method is promising for establishing the overall AGN population trends in the geometry and dynamics of the broad line region. This method can be applied to spectra of AGN at low and high redshift making it valuable for studies of cosmological black hole and AGN evolution., Comment: Accepted for publication in MNRAS
- Published
- 2019
- Full Text
- View/download PDF
16. Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum
- Author
-
Kriss, G. A., De Rosa, G., Ely, J., Peterson, B. M., Kaastra, J., Mehdipour, M., Ferland, G. J., Dehghanian, M., Mathur, S., Edelson, R., Korista, K. T., Arav, N., Barth, A. J., Bentz, M. C., Brandt, W. N., Crenshaw, D. M., Bontà, E. Dalla, Denney, K. D., Done, C., Eracleous, M., Fausnaugh, M. M., Gardner, E., Goad, M. R., Grier, C. J., Horne, Keith, Kochanek, C. S., Mchardy, I. M., Netzer, H., Pancoast, A., Pei, L., Pogge, R. W., Proga, D., Silva, C., Tejos, N., Vestergaard, M., Adams, S. M., Anderson, M. D., Arévalo, P., Beatty, T G., Behar, E., Bennert, V. N., Bianchi, S., Bigley, A., Bisogni, S., Boissay-Malaquin, R., Borman, G. A., Bottorff, M. C., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Cappi, M., Carini, M. T., Clubb, K. I., Comerford, J. M., Coker, C. T., Corsini, E. M., Costantini, E., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Cáceres, A., De Marco, B., Dietrich, M., Di Gesu, L., Ebrero, J., Evans, P. A., Filippenko, A. V., Flatland, K., Gates, E. L., Gehrels, N., Geier, Z S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T. A., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Kaspi, S., Kelly, B. C., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S. C., Kim, S. Y., King, A., Klimanov, S. A., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, Macinnis, F., Malkan, M. A., Manne-Nicholas, E. R., Matt, G., Mauerhan, J. C., Mcgurk, R., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Müller-Sánchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Paltani, S., Parks, J. R., Pinto, C., Pizzella, A., Poleski, R., Ponti, G., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnülle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Teems, K. G., Treu, T., Turner, C. S., Uttley, P., Van Saders, J ., Vican, L., Villforth, C., Villanueva Jr., S., Walton, D. J., Waters, T., Weiss, Y., Woo, J. -H., Yan, H., Yuk, H., Zheng, W., Zhu, W., Zu, Y., Kriss, G. A., De Rosa, G., Ely, J., Peterson, B. M., Kaastra, J., Mehdipour, M., Ferland, G. J., Dehghanian, M., Mathur, S., Edelson, R., Korista, K. T., Arav, N., Barth, A. J., Bentz, M. C., Brandt, W. N., Crenshaw, D. M., Bontà, E. Dalla, Denney, K. D., Done, C., Eracleous, M., Fausnaugh, M. M., Gardner, E., Goad, M. R., Grier, C. J., Horne, Keith, Kochanek, C. S., Mchardy, I. M., Netzer, H., Pancoast, A., Pei, L., Pogge, R. W., Proga, D., Silva, C., Tejos, N., Vestergaard, M., Adams, S. M., Anderson, M. D., Arévalo, P., Beatty, T G., Behar, E., Bennert, V. N., Bianchi, S., Bigley, A., Bisogni, S., Boissay-Malaquin, R., Borman, G. A., Bottorff, M. C., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Cappi, M., Carini, M. T., Clubb, K. I., Comerford, J. M., Coker, C. T., Corsini, E. M., Costantini, E., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Cáceres, A., De Marco, B., Dietrich, M., Di Gesu, L., Ebrero, J., Evans, P. A., Filippenko, A. V., Flatland, K., Gates, E. L., Gehrels, N., Geier, Z S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T. A., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Kaspi, S., Kelly, B. C., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S. C., Kim, S. Y., King, A., Klimanov, S. A., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, Macinnis, F., Malkan, M. A., Manne-Nicholas, E. R., Matt, G., Mauerhan, J. C., Mcgurk, R., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Müller-Sánchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Paltani, S., Parks, J. R., Pinto, C., Pizzella, A., Poleski, R., Ponti, G., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnülle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Teems, K. G., Treu, T., Turner, C. S., Uttley, P., Van Saders, J ., Vican, L., Villforth, C., Villanueva Jr., S., Walton, D. J., Waters, T., Weiss, Y., Woo, J. -H., Yan, H., Yuk, H., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
We model the ultraviolet spectra of the Seyfert 1 galaxy NGC~5548 obtained with the Hubble Space Telescope during the 6-month reverberation-mapping campaign in 2014. Our model of the emission from NGC 5548 corrects for overlying absorption and deblends the individual emission lines. Using the modeled spectra, we measure the response to continuum variations for the deblended and absorption-corrected individual broad emission lines, the velocity-dependent profiles of Ly$\alpha$ and C IV, and the narrow and broad intrinsic absorption features. We find that the time lags for the corrected emission lines are comparable to those for the original data. The velocity-binned lag profiles of Ly$\alpha$ and C IV have a double-peaked structure indicative of a truncated Keplerian disk. The narrow absorption lines show delayed response to continuum variations corresponding to recombination in gas with a density of $\sim 10^5~\rm cm^{-3}$. The high-ionization narrow absorption lines decorrelate from continuum variations during the same period as the broad emission lines. Analyzing the response of these absorption lines during this period shows that the ionizing flux is diminished in strength relative to the far-ultraviolet continuum. The broad absorption lines associated with the X-ray obscurer decrease in strength during this same time interval. The appearance of X-ray obscuration in $\sim\,2012$ corresponds with an increase in the luminosity of NGC 5548 following an extended low state. We suggest that the obscurer is a disk wind triggered by the brightening of NGC 5548 following the decrease in size of the broad-line region during the preceding low-luminosity state., Comment: 50 pages, 30 figures, uses aastex62.cls. Accepted for publication in ApJ, 07/06/2019. High-level products page in MAST will go live after 7/15/2019. Replaced Figure 4 on 7/12/2019 to be more red/green color-blind friendly
- Published
- 2019
- Full Text
- View/download PDF
17. A Cool Accretion Disk around the Galactic Centre Black Hole
- Author
-
Murchikova, Elena M., Phinney, E. Sterl, Pancoast, Anna, Blandford, Roger D., Murchikova, Elena M., Phinney, E. Sterl, Pancoast, Anna, and Blandford, Roger D.
- Abstract
A supermassive black hole SgrA* with the mass ~4x10^6 Msun resides at the centre of our galaxy. Building up such a massive black hole within the ~10^10 year lifetime of our galaxy would require a mean accretion rate of ~4x10^-4 Msun/yr. At present, X-ray observations constrain the rate of hot gas accretion at the Bondi radius (10^5 R_Sch = 0.04 pc at 8kpc) to \dot{M}_Bondi ~ 3x10^-6 Msun/yr, and polarization measurements constrain it near the event horizon to \dot{M}_horizon ~ 10^{-8} Msun/yr. A range of models was developed to describe the accretion gas onto an underfed black hole. However, the exact physics still remains to be understood. One challenge with the radiation inefficient accretion flows is that even if one understands the dynamics there is no accepted prescription for associating emissivity (and absorption) with the flow. The other issue is the lack of model-independent probes of accretion flow at intermediate radii (between few and ~ 10^5 R_Sch), i.e. the constraints that do not assume a model of accretion flow as an input parameter. We report detection and imaging of the 10^4 K ionized gas disk within 2x10^4 R_Sch in a mm hydrogen recombination line H30alpha: n = 31 -> 30 at 231.9 GHz using the ALMA. The emission was detected with a double-peaked line profile spanning full width of 2,200 km/s with the approaching and the receding components straddling Sgr A*, each offset from it by 0.11arcsec= 0.004pc. The red-shifted side is displaced to the north-east, while the blue-shifted side is displaced to the south-west. The limit on the total mass of ionized gas estimated from the emission is 10^-4 - 10^-5 Sun at a mean hydrogen density 10^5-10^6 cm^-3, depending upon whether or not we assume the presence of a uniform density disk or an ensemble of orbiting clouds, and the amplification factor of the mm radiation due to the strong background source which is Sgr A* continuum., Comment: Authors' own extended version
- Published
- 2019
- Full Text
- View/download PDF
18. The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition
- Author
-
The MSE Science Team, Babusiaux, Carine, Bergemann, Maria, Burgasser, Adam, Ellison, Sara, Haggard, Daryl, Huber, Daniel, Kaplinghat, Manoj, Li, Ting, Marshall, Jennifer, Martell, Sarah, McConnachie, Alan, Percival, Will, Robotham, Aaron, Shen, Yue, Thirupathi, Sivarani, Tran, Kim-Vy, Yeche, Christophe, Yong, David, Adibekyan, Vardan, Aguirre, Victor Silva, Angelou, George, Asplund, Martin, Balogh, Michael, Banerjee, Projjwal, Bannister, Michele, Barría, Daniela, Battaglia, Giuseppina, Bayo, Amelia, Bechtol, Keith, Beck, Paul G., Beers, Timothy C., Bellinger, Earl P., Berg, Trystyn, Bestenlehner, Joachim M., Bilicki, Maciej, Bitsch, Bertram, Bland-Hawthorn, Joss, Bolton, Adam S., Boselli, Alessandro, Bovy, Jo, Bragaglia, Angela, Buzasi, Derek, Caffau, Elisabetta, Cami, Jan, Carleton, Timothy, Casagrande, Luca, Cassisi, Santi, Catelan, Márcio, Chang, Chihway, Cortese, Luca, Damjanov, Ivana, Davies, Luke J. M., de Grijs, Richard, de Rosa, Gisella, Deason, Alis, di Matteo, Paola, Drlica-Wagner, Alex, Erkal, Denis, Escorza, Ana, Ferrarese, Laura, Fleming, Scott W., Font-Ribera, Andreu, Freeman, Ken, Gänsicke, Boris T., Gabdeev, Maksim, Gallagher, Sarah, Gandolfi, Davide, García, Rafael A., Gaulme, Patrick, Geha, Marla, Gennaro, Mario, Gieles, Mark, Gilbert, Karoline, Gordon, Yjan, Goswami, Aruna, Greco, Johnny P., Grillmair, Carl, Guiglion, Guillaume, Hénault-Brunet, Vincent, Hall, Patrick, Handler, Gerald, Hansen, Terese, Hathi, Nimish, Hatzidimitriou, Despina, Haywood, Misha, Santisteban, Juan V. Hernández, Hillenbrand, Lynne, Hopkins, Andrew M., Howlett, Cullan, Hudson, Michael J., Ibata, Rodrigo, Ilić, Dragana, Jablonka, Pascale, Ji, Alexander, Jiang, Linhua, Juneau, Stephanie, Karakas, Amanda, Karinkuzhi, Drisya, Kim, Stacy Y., Kong, Xu, Konstantopoulos, Iraklis, Krogager, Jens-Kristian, Lagos, Claudia, Lallement, Rosine, Laporte, Chervin, Lebreton, Yveline, Lee, Khee-Gan, Lewis, Geraint F., Lianou, Sophia, Liu, Xin, Lodieu, Nicolas, Loveday, Jon, Mészáros, Szabolcs, Makler, Martin, Mao, Yao-Yuan, Marchesini, Danilo, Martin, Nicolas, Mateo, Mario, Melis, Carl, Merle, Thibault, Miglio, Andrea, Mohammad, Faizan Gohar, Molaverdikhani, Karan, Monier, Richard, Morel, Thierry, Mosser, Benoit, Nataf, David, Necib, Lina, Neilson, Hilding R., Newman, Jeffrey A., Nierenberg, A. M., Nord, Brian, Noterdaeme, Pasquier, O'Dea, Chris, Oshagh, Mahmoudreza, Pace, Andrew B., Palanque-Delabrouille, Nathalie, Pandey, Gajendra, Parker, Laura C., Pawlowski, Marcel S., Peter, Annika H. G., Petitjean, Patrick, Petric, Andreea, Placco, Vinicius, Popović, Luka Č., Price-Whelan, Adrian M., Prsa, Andrej, Ravindranath, Swara, Rich, R. Michael, Ruan, John, Rybizki, Jan, Sakari, Charli, Sanderson, Robyn E., Schiavon, Ricardo, Schimd, Carlo, Serenelli, Aldo, Siebert, Arnaud, Siudek, Malgorzata, Smiljanic, Rodolfo, Smith, Daniel, Sobeck, Jennifer, Starkenburg, Else, Stello, Dennis, Szabó, Gyula M., Szabo, Robert, Taylor, Matthew A., Thanjavur, Karun, Thomas, Guillaume, Tollerud, Erik, Toonen, Silvia, Tremblay, Pier-Emmanuel, Tresse, Laurence, Tsantaki, Maria, Valentini, Marica, Van Eck, Sophie, Variu, Andrei, Venn, Kim, Villaver, Eva, Walker, Matthew G., Wang, Yiping, Wang, Yuting, Wilson, Michael J., Wright, Nicolas, Xu, Siyi, Yildiz, Mutlu, Zhang, Huawei, Zwintz, Konstanze, Anguiano, Borja, Bedell, Megan, Chaplin, William, Collet, Remo, Cuillandre, Jean-Charles, Duc, Pierre-Alain, Flagey, Nicolas, Hermes, JJ, Hill, Alexis, Kamath, Devika, Laychak, Mary Beth, Małek, Katarzyna, Marley, Mark, Sheinis, Andy, Simons, Doug, Sousa, Sérgio G., Szeto, Kei, Ting, Yuan-Sen, Vegetti, Simona, Wells, Lisa, Babas, Ferdinand, Bauman, Steve, Bosselli, Alessandro, Côté, Pat, Colless, Matthew, Comparat, Johan, Courtois, Helene, Crampton, David, Croom, Scott, Davies, Luke, Denny, Kelly, Devost, Daniel, Driver, Simon, Fernandez-Lorenzo, Mirian, Guhathakurta, Raja, Han, Zhanwen, Higgs, Clare, Hill, Vanessa, Ho, Kevin, Hopkins, Andrew, Hudson, Mike, Isani, Sidik, Jarvis, Matt, Johnson, Andrew, Jullo, Eric, Kaiser, Nick, Kneib, Jean-Paul, Koda, Jun, Koshy, George, Mignot, Shan, Murowinski, Rick, Newman, Jeff, Nusser, Adi, Pancoast, Anna, Peng, Eric, Peroux, Celine, Pichon, Christophe, Poggianti, Bianca, Richard, Johan, Salmon, Derrick, Seibert, Arnaud, Shastri, Prajval, Smith, Dan, Sutaria, Firoza, Tao, Charling, Taylor, Edwar, Tully, Brent, van Waerbeke, Ludovic, Vermeulen, Tom, Walker, Matthew, Willis, Jon, Willot, Chris, Withington, Kanoa, The MSE Science Team, Babusiaux, Carine, Bergemann, Maria, Burgasser, Adam, Ellison, Sara, Haggard, Daryl, Huber, Daniel, Kaplinghat, Manoj, Li, Ting, Marshall, Jennifer, Martell, Sarah, McConnachie, Alan, Percival, Will, Robotham, Aaron, Shen, Yue, Thirupathi, Sivarani, Tran, Kim-Vy, Yeche, Christophe, Yong, David, Adibekyan, Vardan, Aguirre, Victor Silva, Angelou, George, Asplund, Martin, Balogh, Michael, Banerjee, Projjwal, Bannister, Michele, Barría, Daniela, Battaglia, Giuseppina, Bayo, Amelia, Bechtol, Keith, Beck, Paul G., Beers, Timothy C., Bellinger, Earl P., Berg, Trystyn, Bestenlehner, Joachim M., Bilicki, Maciej, Bitsch, Bertram, Bland-Hawthorn, Joss, Bolton, Adam S., Boselli, Alessandro, Bovy, Jo, Bragaglia, Angela, Buzasi, Derek, Caffau, Elisabetta, Cami, Jan, Carleton, Timothy, Casagrande, Luca, Cassisi, Santi, Catelan, Márcio, Chang, Chihway, Cortese, Luca, Damjanov, Ivana, Davies, Luke J. M., de Grijs, Richard, de Rosa, Gisella, Deason, Alis, di Matteo, Paola, Drlica-Wagner, Alex, Erkal, Denis, Escorza, Ana, Ferrarese, Laura, Fleming, Scott W., Font-Ribera, Andreu, Freeman, Ken, Gänsicke, Boris T., Gabdeev, Maksim, Gallagher, Sarah, Gandolfi, Davide, García, Rafael A., Gaulme, Patrick, Geha, Marla, Gennaro, Mario, Gieles, Mark, Gilbert, Karoline, Gordon, Yjan, Goswami, Aruna, Greco, Johnny P., Grillmair, Carl, Guiglion, Guillaume, Hénault-Brunet, Vincent, Hall, Patrick, Handler, Gerald, Hansen, Terese, Hathi, Nimish, Hatzidimitriou, Despina, Haywood, Misha, Santisteban, Juan V. Hernández, Hillenbrand, Lynne, Hopkins, Andrew M., Howlett, Cullan, Hudson, Michael J., Ibata, Rodrigo, Ilić, Dragana, Jablonka, Pascale, Ji, Alexander, Jiang, Linhua, Juneau, Stephanie, Karakas, Amanda, Karinkuzhi, Drisya, Kim, Stacy Y., Kong, Xu, Konstantopoulos, Iraklis, Krogager, Jens-Kristian, Lagos, Claudia, Lallement, Rosine, Laporte, Chervin, Lebreton, Yveline, Lee, Khee-Gan, Lewis, Geraint F., Lianou, Sophia, Liu, Xin, Lodieu, Nicolas, Loveday, Jon, Mészáros, Szabolcs, Makler, Martin, Mao, Yao-Yuan, Marchesini, Danilo, Martin, Nicolas, Mateo, Mario, Melis, Carl, Merle, Thibault, Miglio, Andrea, Mohammad, Faizan Gohar, Molaverdikhani, Karan, Monier, Richard, Morel, Thierry, Mosser, Benoit, Nataf, David, Necib, Lina, Neilson, Hilding R., Newman, Jeffrey A., Nierenberg, A. M., Nord, Brian, Noterdaeme, Pasquier, O'Dea, Chris, Oshagh, Mahmoudreza, Pace, Andrew B., Palanque-Delabrouille, Nathalie, Pandey, Gajendra, Parker, Laura C., Pawlowski, Marcel S., Peter, Annika H. G., Petitjean, Patrick, Petric, Andreea, Placco, Vinicius, Popović, Luka Č., Price-Whelan, Adrian M., Prsa, Andrej, Ravindranath, Swara, Rich, R. Michael, Ruan, John, Rybizki, Jan, Sakari, Charli, Sanderson, Robyn E., Schiavon, Ricardo, Schimd, Carlo, Serenelli, Aldo, Siebert, Arnaud, Siudek, Malgorzata, Smiljanic, Rodolfo, Smith, Daniel, Sobeck, Jennifer, Starkenburg, Else, Stello, Dennis, Szabó, Gyula M., Szabo, Robert, Taylor, Matthew A., Thanjavur, Karun, Thomas, Guillaume, Tollerud, Erik, Toonen, Silvia, Tremblay, Pier-Emmanuel, Tresse, Laurence, Tsantaki, Maria, Valentini, Marica, Van Eck, Sophie, Variu, Andrei, Venn, Kim, Villaver, Eva, Walker, Matthew G., Wang, Yiping, Wang, Yuting, Wilson, Michael J., Wright, Nicolas, Xu, Siyi, Yildiz, Mutlu, Zhang, Huawei, Zwintz, Konstanze, Anguiano, Borja, Bedell, Megan, Chaplin, William, Collet, Remo, Cuillandre, Jean-Charles, Duc, Pierre-Alain, Flagey, Nicolas, Hermes, JJ, Hill, Alexis, Kamath, Devika, Laychak, Mary Beth, Małek, Katarzyna, Marley, Mark, Sheinis, Andy, Simons, Doug, Sousa, Sérgio G., Szeto, Kei, Ting, Yuan-Sen, Vegetti, Simona, Wells, Lisa, Babas, Ferdinand, Bauman, Steve, Bosselli, Alessandro, Côté, Pat, Colless, Matthew, Comparat, Johan, Courtois, Helene, Crampton, David, Croom, Scott, Davies, Luke, Denny, Kelly, Devost, Daniel, Driver, Simon, Fernandez-Lorenzo, Mirian, Guhathakurta, Raja, Han, Zhanwen, Higgs, Clare, Hill, Vanessa, Ho, Kevin, Hopkins, Andrew, Hudson, Mike, Isani, Sidik, Jarvis, Matt, Johnson, Andrew, Jullo, Eric, Kaiser, Nick, Kneib, Jean-Paul, Koda, Jun, Koshy, George, Mignot, Shan, Murowinski, Rick, Newman, Jeff, Nusser, Adi, Pancoast, Anna, Peng, Eric, Peroux, Celine, Pichon, Christophe, Poggianti, Bianca, Richard, Johan, Salmon, Derrick, Seibert, Arnaud, Shastri, Prajval, Smith, Dan, Sutaria, Firoza, Tao, Charling, Taylor, Edwar, Tully, Brent, van Waerbeke, Ludovic, Vermeulen, Tom, Walker, Matthew, Willis, Jon, Willot, Chris, and Withington, Kanoa
- Abstract
(Abridged) The Maunakea Spectroscopic Explorer (MSE) is an end-to-end science platform for the design, execution and scientific exploitation of spectroscopic surveys. It will unveil the composition and dynamics of the faint Universe and impact nearly every field of astrophysics across all spatial scales, from individual stars to the largest scale structures in the Universe. Major pillars in the science program for MSE include (i) the ultimate Gaia follow-up facility for understanding the chemistry and dynamics of the distant Milky Way, including the outer disk and faint stellar halo at high spectral resolution (ii) galaxy formation and evolution at cosmic noon, via the type of revolutionary surveys that have occurred in the nearby Universe, but now conducted at the peak of the star formation history of the Universe (iii) derivation of the mass of the neutrino and insights into inflationary physics through a cosmological redshift survey that probes a large volume of the Universe with a high galaxy density. MSE is positioned to become a critical hub in the emerging international network of front-line astronomical facilities, with scientific capabilities that naturally complement and extend the scientific power of Gaia, the Large Synoptic Survey Telescope, the Square Kilometer Array, Euclid, WFIRST, the 30m telescopes and many more., Comment: 9 chapters, 301 pages, 100 figures. This version of the DSC is a comprehensive update of the original version, released in 2016, which can be downloaded at arXiv:1606.00043. A detailed summary of the design of MSE is available in the MSE Book 2018, available at arXiv:1810.08695
- Published
- 2019
19. Modelling the AGN broad line region using single-epoch spectra - I. The test case of Arp 151
- Author
-
Raimundo, SI, Raimundo, SI, Pancoast, A, Vestergaard, M, Goad, MR, Barth, AJ, Raimundo, SI, Raimundo, SI, Pancoast, A, Vestergaard, M, Goad, MR, and Barth, AJ
- Abstract
We show that individual (single-epoch) spectra of active galactic nuclei (AGNs) can constrain some of the geometry and dynamics of the AGN broad line region. Studies of the cosmic influence of supermassive black holes are limited by the current large uncertainties in the determination of black hole masses. One dominant limitation is the unknown geometry, dynamics, and line-of-sight inclination of the broad line region, used to probe the central black hole mass. Recent progress has been made to constrain the spatial and kinematic structure of the broad line region using dynamical modelling of AGN monitoring data and an underlying physical model for the broad line region. In this work we test the ability of a modified version of this dynamical modelling code to constrain the broad line region structure using single-epoch spectra.We test our modelling code on single-epoch spectra of nearby Arp 151 by comparing our results with those obtained with monitoring data of this same object. We find that a significant fraction of the broad line region parameters can indeed be adequately constrained, with uncertainties that are comparable to, or at most a factor of approximately a few higher than those obtained from modelling of monitoring data. Considering the wealth of available single-epoch spectroscopic observations, this method is promising for establishing the overall AGN population trends in the geometry and dynamics of the broad line region. This method can be applied to spectra of AGNs at low and high redshift making it valuable for studies of cosmological black hole and AGN evolution.
- Published
- 2019
20. Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum
- Author
-
Kriss, GA, Kriss, GA, De Rosa, G, Ely, J, Peterson, BM, Kaastra, J, Mehdipour, M, Ferland, GJ, Dehghanian, M, Mathur, S, Edelson, R, Korista, KT, Arav, N, Barth, AJ, Bentz, MC, Brandt, WN, Crenshaw, DM, Dalla Bontà, E, Denney, KD, Done, C, Eracleous, M, Fausnaugh, MM, Gardner, E, Goad, MR, Grier, CJ, Horne, K, Kochanek, CS, McHardy, IM, Netzer, H, Pancoast, A, Pei, L, Pogge, RW, Proga, D, Silva, C, Tejos, N, Vestergaard, M, Adams, SM, Anderson, MD, Arévalo, P, Beatty, TG, Behar, E, Bennert, VN, Bianchi, S, Bigley, A, Bisogni, S, Boissay-Malaquin, R, Borman, GA, Bottorff, MC, Breeveld, AA, Brotherton, M, Brown, JE, Brown, JS, Cackett, EM, Canalizo, G, Cappi, M, Carini, MT, Clubb, KI, Comerford, JM, Coker, CT, Corsini, EM, Costantini, E, Croft, S, Croxall, KV, Deason, AJ, De Lorenzo-Cáceres, A, De Marco, B, Dietrich, M, Di Gesu, L, Ebrero, J, Evans, PA, Filippenko, AV, Flatland, K, Gates, EL, Gehrels, N, Geier, S, Gelbord, JM, Gonzalez, L, Gorjian, V, Grupe, D, Gupta, A, Hall, PB, Henderson, CB, Hicks, S, Holmbeck, E, Holoien, TWS, Hutchison, TA, Im, M, Jensen, JJ, Johnson, CA, Joner, MD, Kaspi, S, Kelly, BC, Kelly, PL, Kennea, JA, Kim, M, Kim, SC, Kim, SY, King, A, Klimanov, SA, Krongold, Y, Lau, MW, Kriss, GA, Kriss, GA, De Rosa, G, Ely, J, Peterson, BM, Kaastra, J, Mehdipour, M, Ferland, GJ, Dehghanian, M, Mathur, S, Edelson, R, Korista, KT, Arav, N, Barth, AJ, Bentz, MC, Brandt, WN, Crenshaw, DM, Dalla Bontà, E, Denney, KD, Done, C, Eracleous, M, Fausnaugh, MM, Gardner, E, Goad, MR, Grier, CJ, Horne, K, Kochanek, CS, McHardy, IM, Netzer, H, Pancoast, A, Pei, L, Pogge, RW, Proga, D, Silva, C, Tejos, N, Vestergaard, M, Adams, SM, Anderson, MD, Arévalo, P, Beatty, TG, Behar, E, Bennert, VN, Bianchi, S, Bigley, A, Bisogni, S, Boissay-Malaquin, R, Borman, GA, Bottorff, MC, Breeveld, AA, Brotherton, M, Brown, JE, Brown, JS, Cackett, EM, Canalizo, G, Cappi, M, Carini, MT, Clubb, KI, Comerford, JM, Coker, CT, Corsini, EM, Costantini, E, Croft, S, Croxall, KV, Deason, AJ, De Lorenzo-Cáceres, A, De Marco, B, Dietrich, M, Di Gesu, L, Ebrero, J, Evans, PA, Filippenko, AV, Flatland, K, Gates, EL, Gehrels, N, Geier, S, Gelbord, JM, Gonzalez, L, Gorjian, V, Grupe, D, Gupta, A, Hall, PB, Henderson, CB, Hicks, S, Holmbeck, E, Holoien, TWS, Hutchison, TA, Im, M, Jensen, JJ, Johnson, CA, Joner, MD, Kaspi, S, Kelly, BC, Kelly, PL, Kennea, JA, Kim, M, Kim, SC, Kim, SY, King, A, Klimanov, SA, Krongold, Y, and Lau, MW
- Abstract
We model the ultraviolet spectra of the Seyfert 1 galaxy NGC 5548 obtained with the Hubble Space Telescope during the 6 month reverberation mapping campaign in 2014. Our model of the emission from NGC 5548 corrects for overlying absorption and deblends the individual emission lines. Using the modeled spectra, we measure the response to continuum variations for the deblended and absorption-corrected individual broad emission lines, the velocity-dependent profiles of Ly and C iv, and the narrow and broad intrinsic absorption features. We find that the time lags for the corrected emission lines are comparable to those for the original data. The velocity-binned lag profiles of Ly and C iv have a double-peaked structure indicative of a truncated Keplerian disk. The narrow absorption lines show a delayed response to continuum variations corresponding to recombination in gas with a density of ∼105 cm-3. The high-ionization narrow absorption lines decorrelate from continuum variations during the same period as the broad emission lines. Analyzing the response of these absorption lines during this period shows that the ionizing flux is diminished in strength relative to the far-ultraviolet continuum. The broad absorption lines associated with the X-ray obscurer decrease in strength during this same time interval. The appearance of X-ray obscuration in ∼2012 corresponds with an increase in the luminosity of NGC 5548 following an extended low state. We suggest that the obscurer is a disk wind triggered by the brightening of NGC 5548 following the decrease in size of the broad-line region during the preceding low-luminosity state.
- Published
- 2019
21. Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum
- Author
-
Kriss, G. A., De Rosa, G., Ely, J., Peterson, B. M., Kaastra, J., Mehdipour, M., Ferland, G. J., Dehghanian, M., Mathur, S., Edelson, R., Korista, K. T., Arav, N., Barth, A. J., Bentz, M. C., Brandt, W. N., Crenshaw, D. M., Bontà, E. Dalla, Denney, K. D., Done, C., Eracleous, M., Fausnaugh, M. M., Gardner, E., Goad, M. R., Grier, C. J., Horne, Keith, Kochanek, C. S., Mchardy, I. M., Netzer, H., Pancoast, A., Pei, L., Pogge, R. W., Proga, D., Silva, C., Tejos, N., Vestergaard, M., Adams, S. M., Anderson, M. D., Arévalo, P., Beatty, T G., Behar, E., Bennert, V. N., Bianchi, S., Bigley, A., Bisogni, S., Boissay-Malaquin, R., Borman, G. A., Bottorff, M. C., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Cappi, M., Carini, M. T., Clubb, K. I., Comerford, J. M., Coker, C. T., Corsini, E. M., Costantini, E., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Cáceres, A., De Marco, B., Dietrich, M., Di Gesu, L., Ebrero, J., Evans, P. A., Filippenko, A. V., Flatland, K., Gates, E. L., Gehrels, N., Geier, Z S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T. A., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Kaspi, S., Kelly, B. C., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S. C., Kim, S. Y., King, A., Klimanov, S. A., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, Macinnis, F., Malkan, M. A., Manne-Nicholas, E. R., Matt, G., Mauerhan, J. C., Mcgurk, R., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Müller-Sánchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Paltani, S., Parks, J. R., Pinto, C., Pizzella, A., Poleski, R., Ponti, G., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnülle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Teems, K. G., Treu, T., Turner, C. S., Uttley, P., Van Saders, J ., Vican, L., Villforth, C., Villanueva Jr., S., Walton, D. J., Waters, T., Weiss, Y., Woo, J. -H., Yan, H., Yuk, H., Zheng, W., Zhu, W., Zu, Y., Kriss, G. A., De Rosa, G., Ely, J., Peterson, B. M., Kaastra, J., Mehdipour, M., Ferland, G. J., Dehghanian, M., Mathur, S., Edelson, R., Korista, K. T., Arav, N., Barth, A. J., Bentz, M. C., Brandt, W. N., Crenshaw, D. M., Bontà, E. Dalla, Denney, K. D., Done, C., Eracleous, M., Fausnaugh, M. M., Gardner, E., Goad, M. R., Grier, C. J., Horne, Keith, Kochanek, C. S., Mchardy, I. M., Netzer, H., Pancoast, A., Pei, L., Pogge, R. W., Proga, D., Silva, C., Tejos, N., Vestergaard, M., Adams, S. M., Anderson, M. D., Arévalo, P., Beatty, T G., Behar, E., Bennert, V. N., Bianchi, S., Bigley, A., Bisogni, S., Boissay-Malaquin, R., Borman, G. A., Bottorff, M. C., Breeveld, A. A., Brotherton, M., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Cappi, M., Carini, M. T., Clubb, K. I., Comerford, J. M., Coker, C. T., Corsini, E. M., Costantini, E., Croft, S., Croxall, K. V., Deason, A. J., De Lorenzo-Cáceres, A., De Marco, B., Dietrich, M., Di Gesu, L., Ebrero, J., Evans, P. A., Filippenko, A. V., Flatland, K., Gates, E. L., Gehrels, N., Geier, Z S., Gelbord, J. M., Gonzalez, L., Gorjian, V., Grupe, D., Gupta, A., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Hutchison, T. A., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Kaspi, S., Kelly, B. C., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S. C., Kim, S. Y., King, A., Klimanov, S. A., Krongold, Y., Lau, M. W., Lee, J. C., Leonard, D. C., Li, Miao, Lira, P., Lochhaas, C., Ma, Zhiyuan, Macinnis, F., Malkan, M. A., Manne-Nicholas, E. R., Matt, G., Mauerhan, J. C., Mcgurk, R., Montuori, C., Morelli, L., Mosquera, A., Mudd, D., Müller-Sánchez, F., Nazarov, S. V., Norris, R. P., Nousek, J. A., Nguyen, M. L., Ochner, P., Okhmat, D. N., Paltani, S., Parks, J. R., Pinto, C., Pizzella, A., Poleski, R., Ponti, G., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnülle, K., Scott, B., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Teems, K. G., Treu, T., Turner, C. S., Uttley, P., Van Saders, J ., Vican, L., Villforth, C., Villanueva Jr., S., Walton, D. J., Waters, T., Weiss, Y., Woo, J. -H., Yan, H., Yuk, H., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
We model the ultraviolet spectra of the Seyfert 1 galaxy NGC~5548 obtained with the Hubble Space Telescope during the 6-month reverberation-mapping campaign in 2014. Our model of the emission from NGC 5548 corrects for overlying absorption and deblends the individual emission lines. Using the modeled spectra, we measure the response to continuum variations for the deblended and absorption-corrected individual broad emission lines, the velocity-dependent profiles of Ly$\alpha$ and C IV, and the narrow and broad intrinsic absorption features. We find that the time lags for the corrected emission lines are comparable to those for the original data. The velocity-binned lag profiles of Ly$\alpha$ and C IV have a double-peaked structure indicative of a truncated Keplerian disk. The narrow absorption lines show delayed response to continuum variations corresponding to recombination in gas with a density of $\sim 10^5~\rm cm^{-3}$. The high-ionization narrow absorption lines decorrelate from continuum variations during the same period as the broad emission lines. Analyzing the response of these absorption lines during this period shows that the ionizing flux is diminished in strength relative to the far-ultraviolet continuum. The broad absorption lines associated with the X-ray obscurer decrease in strength during this same time interval. The appearance of X-ray obscuration in $\sim\,2012$ corresponds with an increase in the luminosity of NGC 5548 following an extended low state. We suggest that the obscurer is a disk wind triggered by the brightening of NGC 5548 following the decrease in size of the broad-line region during the preceding low-luminosity state., Comment: 50 pages, 30 figures, uses aastex62.cls. Accepted for publication in ApJ, 07/06/2019. High-level products page in MAST will go live after 7/15/2019. Replaced Figure 4 on 7/12/2019 to be more red/green color-blind friendly
- Published
- 2019
- Full Text
- View/download PDF
22. Do Reverberation Mapping Analyses Provide an Accurate Picture of the Broad Line Region?
- Author
-
Mangham, S. W., Knigge, C., Williams, P., Horne, Keith, Pancoast, A., Matthews, J. H., Long, K. S., Sim, S. A., Higginbottom, N., Mangham, S. W., Knigge, C., Williams, P., Horne, Keith, Pancoast, A., Matthews, J. H., Long, K. S., Sim, S. A., and Higginbottom, N.
- Abstract
Reverberation mapping (RM) is a powerful approach for determining the nature of the broad-line region (BLR) in active galactic nuclei. However, inferring physical BLR properties from an observed spectroscopic time series is a difficult inverse problem. Here, we present a blind test of two widely used RM methods: MEMEcho (developed by Horne) and CARAMEL (developed by Pancoast and collaborators). The test data are simulated spectroscopic time series that track the H$\alpha$ emission line response to an empirical continuum light curve. The underlying BLR model is a rotating, biconical accretion disc wind, and the synthetic spectra are generated via self-consistent ionization and radiative transfer simulations. We generate two mock data sets, representing Seyfert galaxies and QSOs. The Seyfert model produces a largely *negative* response, which neither method can recover. However, both fail $``gracefully''$, neither generating spurious results. For the QSO model both CARAMEL and expert interpretation of MEMEcho's output both capture the broadly annular, rotation-dominated nature of the line-forming region, though MEMEcho analysis overestimates its size by 50%, but CARAMEL is unable to distinguish between additional inflow and outflow components. Despite fitting individual spectra well, the CARAMEL velocity-delay maps and RMS line profiles are strongly inconsistent with the input data. Finally, since the H$\alpha$ line-forming region is rotation dominated, neither method recovers the disc wind nature of the underlying BLR model. Thus considerable care is required when interpreting the results of RM analyses in terms of physical models., Comment: 22 pages, 24 figures
- Published
- 2019
- Full Text
- View/download PDF
23. A Cool Accretion Disk around the Galactic Centre Black Hole
- Author
-
Murchikova, Elena M., Phinney, E. Sterl, Pancoast, Anna, Blandford, Roger D., Murchikova, Elena M., Phinney, E. Sterl, Pancoast, Anna, and Blandford, Roger D.
- Abstract
A supermassive black hole SgrA* with the mass ~4x10^6 Msun resides at the centre of our galaxy. Building up such a massive black hole within the ~10^10 year lifetime of our galaxy would require a mean accretion rate of ~4x10^-4 Msun/yr. At present, X-ray observations constrain the rate of hot gas accretion at the Bondi radius (10^5 R_Sch = 0.04 pc at 8kpc) to \dot{M}_Bondi ~ 3x10^-6 Msun/yr, and polarization measurements constrain it near the event horizon to \dot{M}_horizon ~ 10^{-8} Msun/yr. A range of models was developed to describe the accretion gas onto an underfed black hole. However, the exact physics still remains to be understood. One challenge with the radiation inefficient accretion flows is that even if one understands the dynamics there is no accepted prescription for associating emissivity (and absorption) with the flow. The other issue is the lack of model-independent probes of accretion flow at intermediate radii (between few and ~ 10^5 R_Sch), i.e. the constraints that do not assume a model of accretion flow as an input parameter. We report detection and imaging of the 10^4 K ionized gas disk within 2x10^4 R_Sch in a mm hydrogen recombination line H30alpha: n = 31 -> 30 at 231.9 GHz using the ALMA. The emission was detected with a double-peaked line profile spanning full width of 2,200 km/s with the approaching and the receding components straddling Sgr A*, each offset from it by 0.11arcsec= 0.004pc. The red-shifted side is displaced to the north-east, while the blue-shifted side is displaced to the south-west. The limit on the total mass of ionized gas estimated from the emission is 10^-4 - 10^-5 Sun at a mean hydrogen density 10^5-10^6 cm^-3, depending upon whether or not we assume the presence of a uniform density disk or an ensemble of orbiting clouds, and the amplification factor of the mm radiation due to the strong background source which is Sgr A* continuum., Comment: Authors' own extended version
- Published
- 2019
- Full Text
- View/download PDF
24. The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition
- Author
-
The MSE Science Team, Babusiaux, Carine, Bergemann, Maria, Burgasser, Adam, Ellison, Sara, Haggard, Daryl, Huber, Daniel, Kaplinghat, Manoj, Li, Ting, Marshall, Jennifer, Martell, Sarah, McConnachie, Alan, Percival, Will, Robotham, Aaron, Shen, Yue, Thirupathi, Sivarani, Tran, Kim-Vy, Yeche, Christophe, Yong, David, Adibekyan, Vardan, Aguirre, Victor Silva, Angelou, George, Asplund, Martin, Balogh, Michael, Banerjee, Projjwal, Bannister, Michele, Barría, Daniela, Battaglia, Giuseppina, Bayo, Amelia, Bechtol, Keith, Beck, Paul G., Beers, Timothy C., Bellinger, Earl P., Berg, Trystyn, Bestenlehner, Joachim M., Bilicki, Maciej, Bitsch, Bertram, Bland-Hawthorn, Joss, Bolton, Adam S., Boselli, Alessandro, Bovy, Jo, Bragaglia, Angela, Buzasi, Derek, Caffau, Elisabetta, Cami, Jan, Carleton, Timothy, Casagrande, Luca, Cassisi, Santi, Catelan, Márcio, Chang, Chihway, Cortese, Luca, Damjanov, Ivana, Davies, Luke J. M., de Grijs, Richard, de Rosa, Gisella, Deason, Alis, di Matteo, Paola, Drlica-Wagner, Alex, Erkal, Denis, Escorza, Ana, Ferrarese, Laura, Fleming, Scott W., Font-Ribera, Andreu, Freeman, Ken, Gänsicke, Boris T., Gabdeev, Maksim, Gallagher, Sarah, Gandolfi, Davide, García, Rafael A., Gaulme, Patrick, Geha, Marla, Gennaro, Mario, Gieles, Mark, Gilbert, Karoline, Gordon, Yjan, Goswami, Aruna, Greco, Johnny P., Grillmair, Carl, Guiglion, Guillaume, Hénault-Brunet, Vincent, Hall, Patrick, Handler, Gerald, Hansen, Terese, Hathi, Nimish, Hatzidimitriou, Despina, Haywood, Misha, Santisteban, Juan V. Hernández, Hillenbrand, Lynne, Hopkins, Andrew M., Howlett, Cullan, Hudson, Michael J., Ibata, Rodrigo, Ilić, Dragana, Jablonka, Pascale, Ji, Alexander, Jiang, Linhua, Juneau, Stephanie, Karakas, Amanda, Karinkuzhi, Drisya, Kim, Stacy Y., Kong, Xu, Konstantopoulos, Iraklis, Krogager, Jens-Kristian, Lagos, Claudia, Lallement, Rosine, Laporte, Chervin, Lebreton, Yveline, Lee, Khee-Gan, Lewis, Geraint F., Lianou, Sophia, Liu, Xin, Lodieu, Nicolas, Loveday, Jon, Mészáros, Szabolcs, Makler, Martin, Mao, Yao-Yuan, Marchesini, Danilo, Martin, Nicolas, Mateo, Mario, Melis, Carl, Merle, Thibault, Miglio, Andrea, Mohammad, Faizan Gohar, Molaverdikhani, Karan, Monier, Richard, Morel, Thierry, Mosser, Benoit, Nataf, David, Necib, Lina, Neilson, Hilding R., Newman, Jeffrey A., Nierenberg, A. M., Nord, Brian, Noterdaeme, Pasquier, O'Dea, Chris, Oshagh, Mahmoudreza, Pace, Andrew B., Palanque-Delabrouille, Nathalie, Pandey, Gajendra, Parker, Laura C., Pawlowski, Marcel S., Peter, Annika H. G., Petitjean, Patrick, Petric, Andreea, Placco, Vinicius, Popović, Luka Č., Price-Whelan, Adrian M., Prsa, Andrej, Ravindranath, Swara, Rich, R. Michael, Ruan, John, Rybizki, Jan, Sakari, Charli, Sanderson, Robyn E., Schiavon, Ricardo, Schimd, Carlo, Serenelli, Aldo, Siebert, Arnaud, Siudek, Malgorzata, Smiljanic, Rodolfo, Smith, Daniel, Sobeck, Jennifer, Starkenburg, Else, Stello, Dennis, Szabó, Gyula M., Szabo, Robert, Taylor, Matthew A., Thanjavur, Karun, Thomas, Guillaume, Tollerud, Erik, Toonen, Silvia, Tremblay, Pier-Emmanuel, Tresse, Laurence, Tsantaki, Maria, Valentini, Marica, Van Eck, Sophie, Variu, Andrei, Venn, Kim, Villaver, Eva, Walker, Matthew G., Wang, Yiping, Wang, Yuting, Wilson, Michael J., Wright, Nicolas, Xu, Siyi, Yildiz, Mutlu, Zhang, Huawei, Zwintz, Konstanze, Anguiano, Borja, Bedell, Megan, Chaplin, William, Collet, Remo, Cuillandre, Jean-Charles, Duc, Pierre-Alain, Flagey, Nicolas, Hermes, JJ, Hill, Alexis, Kamath, Devika, Laychak, Mary Beth, Małek, Katarzyna, Marley, Mark, Sheinis, Andy, Simons, Doug, Sousa, Sérgio G., Szeto, Kei, Ting, Yuan-Sen, Vegetti, Simona, Wells, Lisa, Babas, Ferdinand, Bauman, Steve, Bosselli, Alessandro, Côté, Pat, Colless, Matthew, Comparat, Johan, Courtois, Helene, Crampton, David, Croom, Scott, Davies, Luke, Denny, Kelly, Devost, Daniel, Driver, Simon, Fernandez-Lorenzo, Mirian, Guhathakurta, Raja, Han, Zhanwen, Higgs, Clare, Hill, Vanessa, Ho, Kevin, Hopkins, Andrew, Hudson, Mike, Isani, Sidik, Jarvis, Matt, Johnson, Andrew, Jullo, Eric, Kaiser, Nick, Kneib, Jean-Paul, Koda, Jun, Koshy, George, Mignot, Shan, Murowinski, Rick, Newman, Jeff, Nusser, Adi, Pancoast, Anna, Peng, Eric, Peroux, Celine, Pichon, Christophe, Poggianti, Bianca, Richard, Johan, Salmon, Derrick, Seibert, Arnaud, Shastri, Prajval, Smith, Dan, Sutaria, Firoza, Tao, Charling, Taylor, Edwar, Tully, Brent, van Waerbeke, Ludovic, Vermeulen, Tom, Walker, Matthew, Willis, Jon, Willot, Chris, Withington, Kanoa, The MSE Science Team, Babusiaux, Carine, Bergemann, Maria, Burgasser, Adam, Ellison, Sara, Haggard, Daryl, Huber, Daniel, Kaplinghat, Manoj, Li, Ting, Marshall, Jennifer, Martell, Sarah, McConnachie, Alan, Percival, Will, Robotham, Aaron, Shen, Yue, Thirupathi, Sivarani, Tran, Kim-Vy, Yeche, Christophe, Yong, David, Adibekyan, Vardan, Aguirre, Victor Silva, Angelou, George, Asplund, Martin, Balogh, Michael, Banerjee, Projjwal, Bannister, Michele, Barría, Daniela, Battaglia, Giuseppina, Bayo, Amelia, Bechtol, Keith, Beck, Paul G., Beers, Timothy C., Bellinger, Earl P., Berg, Trystyn, Bestenlehner, Joachim M., Bilicki, Maciej, Bitsch, Bertram, Bland-Hawthorn, Joss, Bolton, Adam S., Boselli, Alessandro, Bovy, Jo, Bragaglia, Angela, Buzasi, Derek, Caffau, Elisabetta, Cami, Jan, Carleton, Timothy, Casagrande, Luca, Cassisi, Santi, Catelan, Márcio, Chang, Chihway, Cortese, Luca, Damjanov, Ivana, Davies, Luke J. M., de Grijs, Richard, de Rosa, Gisella, Deason, Alis, di Matteo, Paola, Drlica-Wagner, Alex, Erkal, Denis, Escorza, Ana, Ferrarese, Laura, Fleming, Scott W., Font-Ribera, Andreu, Freeman, Ken, Gänsicke, Boris T., Gabdeev, Maksim, Gallagher, Sarah, Gandolfi, Davide, García, Rafael A., Gaulme, Patrick, Geha, Marla, Gennaro, Mario, Gieles, Mark, Gilbert, Karoline, Gordon, Yjan, Goswami, Aruna, Greco, Johnny P., Grillmair, Carl, Guiglion, Guillaume, Hénault-Brunet, Vincent, Hall, Patrick, Handler, Gerald, Hansen, Terese, Hathi, Nimish, Hatzidimitriou, Despina, Haywood, Misha, Santisteban, Juan V. Hernández, Hillenbrand, Lynne, Hopkins, Andrew M., Howlett, Cullan, Hudson, Michael J., Ibata, Rodrigo, Ilić, Dragana, Jablonka, Pascale, Ji, Alexander, Jiang, Linhua, Juneau, Stephanie, Karakas, Amanda, Karinkuzhi, Drisya, Kim, Stacy Y., Kong, Xu, Konstantopoulos, Iraklis, Krogager, Jens-Kristian, Lagos, Claudia, Lallement, Rosine, Laporte, Chervin, Lebreton, Yveline, Lee, Khee-Gan, Lewis, Geraint F., Lianou, Sophia, Liu, Xin, Lodieu, Nicolas, Loveday, Jon, Mészáros, Szabolcs, Makler, Martin, Mao, Yao-Yuan, Marchesini, Danilo, Martin, Nicolas, Mateo, Mario, Melis, Carl, Merle, Thibault, Miglio, Andrea, Mohammad, Faizan Gohar, Molaverdikhani, Karan, Monier, Richard, Morel, Thierry, Mosser, Benoit, Nataf, David, Necib, Lina, Neilson, Hilding R., Newman, Jeffrey A., Nierenberg, A. M., Nord, Brian, Noterdaeme, Pasquier, O'Dea, Chris, Oshagh, Mahmoudreza, Pace, Andrew B., Palanque-Delabrouille, Nathalie, Pandey, Gajendra, Parker, Laura C., Pawlowski, Marcel S., Peter, Annika H. G., Petitjean, Patrick, Petric, Andreea, Placco, Vinicius, Popović, Luka Č., Price-Whelan, Adrian M., Prsa, Andrej, Ravindranath, Swara, Rich, R. Michael, Ruan, John, Rybizki, Jan, Sakari, Charli, Sanderson, Robyn E., Schiavon, Ricardo, Schimd, Carlo, Serenelli, Aldo, Siebert, Arnaud, Siudek, Malgorzata, Smiljanic, Rodolfo, Smith, Daniel, Sobeck, Jennifer, Starkenburg, Else, Stello, Dennis, Szabó, Gyula M., Szabo, Robert, Taylor, Matthew A., Thanjavur, Karun, Thomas, Guillaume, Tollerud, Erik, Toonen, Silvia, Tremblay, Pier-Emmanuel, Tresse, Laurence, Tsantaki, Maria, Valentini, Marica, Van Eck, Sophie, Variu, Andrei, Venn, Kim, Villaver, Eva, Walker, Matthew G., Wang, Yiping, Wang, Yuting, Wilson, Michael J., Wright, Nicolas, Xu, Siyi, Yildiz, Mutlu, Zhang, Huawei, Zwintz, Konstanze, Anguiano, Borja, Bedell, Megan, Chaplin, William, Collet, Remo, Cuillandre, Jean-Charles, Duc, Pierre-Alain, Flagey, Nicolas, Hermes, JJ, Hill, Alexis, Kamath, Devika, Laychak, Mary Beth, Małek, Katarzyna, Marley, Mark, Sheinis, Andy, Simons, Doug, Sousa, Sérgio G., Szeto, Kei, Ting, Yuan-Sen, Vegetti, Simona, Wells, Lisa, Babas, Ferdinand, Bauman, Steve, Bosselli, Alessandro, Côté, Pat, Colless, Matthew, Comparat, Johan, Courtois, Helene, Crampton, David, Croom, Scott, Davies, Luke, Denny, Kelly, Devost, Daniel, Driver, Simon, Fernandez-Lorenzo, Mirian, Guhathakurta, Raja, Han, Zhanwen, Higgs, Clare, Hill, Vanessa, Ho, Kevin, Hopkins, Andrew, Hudson, Mike, Isani, Sidik, Jarvis, Matt, Johnson, Andrew, Jullo, Eric, Kaiser, Nick, Kneib, Jean-Paul, Koda, Jun, Koshy, George, Mignot, Shan, Murowinski, Rick, Newman, Jeff, Nusser, Adi, Pancoast, Anna, Peng, Eric, Peroux, Celine, Pichon, Christophe, Poggianti, Bianca, Richard, Johan, Salmon, Derrick, Seibert, Arnaud, Shastri, Prajval, Smith, Dan, Sutaria, Firoza, Tao, Charling, Taylor, Edwar, Tully, Brent, van Waerbeke, Ludovic, Vermeulen, Tom, Walker, Matthew, Willis, Jon, Willot, Chris, and Withington, Kanoa
- Abstract
(Abridged) The Maunakea Spectroscopic Explorer (MSE) is an end-to-end science platform for the design, execution and scientific exploitation of spectroscopic surveys. It will unveil the composition and dynamics of the faint Universe and impact nearly every field of astrophysics across all spatial scales, from individual stars to the largest scale structures in the Universe. Major pillars in the science program for MSE include (i) the ultimate Gaia follow-up facility for understanding the chemistry and dynamics of the distant Milky Way, including the outer disk and faint stellar halo at high spectral resolution (ii) galaxy formation and evolution at cosmic noon, via the type of revolutionary surveys that have occurred in the nearby Universe, but now conducted at the peak of the star formation history of the Universe (iii) derivation of the mass of the neutrino and insights into inflationary physics through a cosmological redshift survey that probes a large volume of the Universe with a high galaxy density. MSE is positioned to become a critical hub in the emerging international network of front-line astronomical facilities, with scientific capabilities that naturally complement and extend the scientific power of Gaia, the Large Synoptic Survey Telescope, the Square Kilometer Array, Euclid, WFIRST, the 30m telescopes and many more., Comment: 9 chapters, 301 pages, 100 figures. This version of the DSC is a comprehensive update of the original version, released in 2016, which can be downloaded at arXiv:1606.00043. A detailed summary of the design of MSE is available in the MSE Book 2018, available at arXiv:1810.08695
- Published
- 2019
25. Modelling the AGN broad line region using single-epoch spectra I. The test case of Arp 151
- Author
-
Raimundo, S. I., Pancoast, A., Vestergaard, M., Goad, M. R., Barth, A. J., Raimundo, S. I., Pancoast, A., Vestergaard, M., Goad, M. R., and Barth, A. J.
- Abstract
We show that individual (single-epoch) spectra of AGN can constrain some of the geometry and dynamics of the AGN broad line region. Studies of the cosmic influence of supermassive black holes are limited by the current large uncertainties in the determination of black hole masses. One dominant limitation is the unknown geometry, dynamics and line-of-sight inclination of the broad line region, used to probe the central black hole mass. Recent progress has been made to constrain the spatial and kinematic structure of the broad line region using dynamical modelling of AGN monitoring data and an underlying physical model for the broad line region. In this work we test the ability of a modified version of this dynamical modelling code to constrain the broad line region structure using single-epoch spectra. We test our modelling code on single-epoch spectra of nearby Arp 151 by comparing our results with those obtained with monitoring data of this same object. We find that a significant fraction of the broad line region parameters can indeed be adequately constrained, with uncertainties that are comparable to, or at most a factor of ~ a few higher than those obtained from modelling of monitoring data. Considering the wealth of available single-epoch spectroscopic observations, this method is promising for establishing the overall AGN population trends in the geometry and dynamics of the broad line region. This method can be applied to spectra of AGN at low and high redshift making it valuable for studies of cosmological black hole and AGN evolution., Comment: Accepted for publication in MNRAS
- Published
- 2019
- Full Text
- View/download PDF
26. The Lick AGN Monitoring Project 2011:Photometric Light Curves
- Author
-
Pancoast, Anna, Skielboe, Andreas, Pei, Liuyi, Bennert, Vardha N., Sand, David J., Barth, Aaron J., Joner, Michael D., Thorman, Shawn, Schmidt, Thomas, Treu, Tommaso, Brewer, Brendon J., Li, Weidong, Buehler, Tabitha, Laney, C. David, Canalizo, Gabriela, Filippenko, Alexei V., Greene, Jenny E., Malkan, Matthew A., Stern, Daniel, Woo, Jong-Hak, Pancoast, Anna, Skielboe, Andreas, Pei, Liuyi, Bennert, Vardha N., Sand, David J., Barth, Aaron J., Joner, Michael D., Thorman, Shawn, Schmidt, Thomas, Treu, Tommaso, Brewer, Brendon J., Li, Weidong, Buehler, Tabitha, Laney, C. David, Canalizo, Gabriela, Filippenko, Alexei V., Greene, Jenny E., Malkan, Matthew A., Stern, Daniel, and Woo, Jong-Hak
- Published
- 2019
27. Modelling the AGN broad line region using single-epoch spectra - I. The test case of Arp 151
- Author
-
Raimundo, S. I., Pancoast, A., Vestergaard, M., Goad, M. R., Barth, A. J., Raimundo, S. I., Pancoast, A., Vestergaard, M., Goad, M. R., and Barth, A. J.
- Abstract
We show that individual (single-epoch) spectra of active galactic nuclei (AGNs) can constrain some of the geometry and dynamics of the AGN broad line region. Studies of the cosmic influence of supermassive black holes are limited by the current large uncertainties in the determination of black hole masses. One dominant limitation is the unknown geometry, dynamics, and line-of-sight inclination of the broad line region, used to probe the central black hole mass. Recent progress has been made to constrain the spatial and kinematic structure of the broad line region using dynamical modelling of AGN monitoring data and an underlying physical model for the broad line region. In this work we test the ability of a modified version of this dynamical modelling code to constrain the broad line region structure using single-epoch spectra. We test our modelling code on single-epoch spectra of nearby Arp 151 by comparing our results with those obtained with monitoring data of this same object. We find that a significant fraction of the broad line region parameters can indeed be adequately constrained, with uncertainties that are comparable to, or at most a factor of approximately a few higher than those obtained from modelling of monitoring data. Considering the wealth of available single-epoch spectroscopic observations, this method is promising for establishing the overall AGN population trends in the geometry and dynamics of the broad line region. This method can be applied to spectra of AGNs at low and high redshift making it valuable for studies of cosmological black hole and AGN evolution.
- Published
- 2019
28. Modelling the AGN broad line region using single-epoch spectra - I. The test case of Arp 151
- Author
-
Raimundo, S. I., Pancoast, A., Vestergaard, M., Goad, M. R., Barth, A. J., Raimundo, S. I., Pancoast, A., Vestergaard, M., Goad, M. R., and Barth, A. J.
- Abstract
We show that individual (single-epoch) spectra of active galactic nuclei (AGNs) can constrain some of the geometry and dynamics of the AGN broad line region. Studies of the cosmic influence of supermassive black holes are limited by the current large uncertainties in the determination of black hole masses. One dominant limitation is the unknown geometry, dynamics, and line-of-sight inclination of the broad line region, used to probe the central black hole mass. Recent progress has been made to constrain the spatial and kinematic structure of the broad line region using dynamical modelling of AGN monitoring data and an underlying physical model for the broad line region. In this work we test the ability of a modified version of this dynamical modelling code to constrain the broad line region structure using single-epoch spectra. We test our modelling code on single-epoch spectra of nearby Arp 151 by comparing our results with those obtained with monitoring data of this same object. We find that a significant fraction of the broad line region parameters can indeed be adequately constrained, with uncertainties that are comparable to, or at most a factor of approximately a few higher than those obtained from modelling of monitoring data. Considering the wealth of available single-epoch spectroscopic observations, this method is promising for establishing the overall AGN population trends in the geometry and dynamics of the broad line region. This method can be applied to spectra of AGNs at low and high redshift making it valuable for studies of cosmological black hole and AGN evolution.
- Published
- 2019
29. The Lick AGN Monitoring Project 2011:Photometric Light Curves
- Author
-
Pancoast, Anna, Skielboe, Andreas, Pei, Liuyi, Bennert, Vardha N., Sand, David J., Barth, Aaron J., Joner, Michael D., Thorman, Shawn, Schmidt, Thomas, Treu, Tommaso, Brewer, Brendon J., Li, Weidong, Buehler, Tabitha, Laney, C. David, Canalizo, Gabriela, Filippenko, Alexei V., Greene, Jenny E., Malkan, Matthew A., Stern, Daniel, Woo, Jong-Hak, Pancoast, Anna, Skielboe, Andreas, Pei, Liuyi, Bennert, Vardha N., Sand, David J., Barth, Aaron J., Joner, Michael D., Thorman, Shawn, Schmidt, Thomas, Treu, Tommaso, Brewer, Brendon J., Li, Weidong, Buehler, Tabitha, Laney, C. David, Canalizo, Gabriela, Filippenko, Alexei V., Greene, Jenny E., Malkan, Matthew A., Stern, Daniel, and Woo, Jong-Hak
- Published
- 2019
30. Velocity-resolved Reverberation Mapping of Five Bright Seyfert 1 Galaxies
- Author
-
De Rosa, G., Fausnaugh, M. M., Grier, C. J., Peterson, B. M., Denney, K. D., Horne, Keith, Bentz, M. C., Ciroi, S., Dalla Bonta, E., Joner, M. D., Kaspi, S., Kochanek, C. S., Pogge, R. W., Sergeev, S. G., Vestergaard, M., Adams, S. M., Antognini, J., Salvo, C. Araya, Armstrong, E., Bae, J., Barth, A. J., Beatty, T. G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, J. E., Brown, J. S., Brotherton, M. S., Coker, C. T., Clanton, C., Cracco, V., Crawford, S. M., Croxall, K. V., Eftekharzadeh, S., Eracleous, M., Fiorenza, S. L., Frassati, A., Hawkins, K., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kellar, J., Kilerci-Eser, E., Kim, S., King, A. L., La Mura, G., Laney, C. D., Li, M., Lochhaas, C., Ma, Z., MacInnis, F., Manne-Nicholas, E. R., Mason, M., McGraw, S. M., Mogren, K., Montouri, C., Moody, J. W., Mosquera, A. M., Mudd, D., Musso, R., Nazarov, S. V., Nguyen, M. L., Ochner, P., Okhmat, D. N., Onken, C. A., Ou-Yang, B., Pancoast, A., Pei, L., Penny, M., Poleski, R., Portaluri, E., Prieto, J. -L., Price-Whelan, A. M., Pulatova, N. G., Rafter, S., Roettenbacher, Rachael M., Romero-Colmenero, E., Runnoe, J., Schimoia, J. S., Shappee, B. J., Sherf, N., Simonian, G. V., Siviero, A., Skowron, D. M., Skowron, J., Somers, G., Spencer, M., Starkey, D. A., Stevens, D. J., Stoll, R., Tamajo, E., Tayar, J., van Saders, J. L., Valenti, S., Villanueva, S., Villforth, C., Weiss, Y., Winkler, H., Zastrow, J., Zhu, W., Zu, Y., De Rosa, G., Fausnaugh, M. M., Grier, C. J., Peterson, B. M., Denney, K. D., Horne, Keith, Bentz, M. C., Ciroi, S., Dalla Bonta, E., Joner, M. D., Kaspi, S., Kochanek, C. S., Pogge, R. W., Sergeev, S. G., Vestergaard, M., Adams, S. M., Antognini, J., Salvo, C. Araya, Armstrong, E., Bae, J., Barth, A. J., Beatty, T. G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, J. E., Brown, J. S., Brotherton, M. S., Coker, C. T., Clanton, C., Cracco, V., Crawford, S. M., Croxall, K. V., Eftekharzadeh, S., Eracleous, M., Fiorenza, S. L., Frassati, A., Hawkins, K., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kellar, J., Kilerci-Eser, E., Kim, S., King, A. L., La Mura, G., Laney, C. D., Li, M., Lochhaas, C., Ma, Z., MacInnis, F., Manne-Nicholas, E. R., Mason, M., McGraw, S. M., Mogren, K., Montouri, C., Moody, J. W., Mosquera, A. M., Mudd, D., Musso, R., Nazarov, S. V., Nguyen, M. L., Ochner, P., Okhmat, D. N., Onken, C. A., Ou-Yang, B., Pancoast, A., Pei, L., Penny, M., Poleski, R., Portaluri, E., Prieto, J. -L., Price-Whelan, A. M., Pulatova, N. G., Rafter, S., Roettenbacher, Rachael M., Romero-Colmenero, E., Runnoe, J., Schimoia, J. S., Shappee, B. J., Sherf, N., Simonian, G. V., Siviero, A., Skowron, D. M., Skowron, J., Somers, G., Spencer, M., Starkey, D. A., Stevens, D. J., Stoll, R., Tamajo, E., Tayar, J., van Saders, J. L., Valenti, S., Villanueva, S., Villforth, C., Weiss, Y., Winkler, H., Zastrow, J., Zhu, W., and Zu, Y.
- Abstract
We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one active galactic nucleus (AGN) (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-H beta reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure H beta time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity-dependent H beta lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007.
- Published
- 2018
- Full Text
- View/download PDF
31. The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad-Line Region
- Author
-
Williams, Peter R., Pancoast, Anna, Treu, Tommaso, Brewer, Brendon J., Barth, Aaron J., Bennert, Vardha N., Buehler, Tabitha, Canalizo, Gabriela, Cenko, S. Bradley, Clubb, Kelsey I., Cooper, Michael C., Filippenko, Alexei V., Gates, Elinor, Hoenig, Sebastian F., Joner, Michael D., Kandrashoff, Michael T., Laney, Clifton David, Lazarova, Mariana S., Li, Weidong, Malkan, Matthew A., Rex, Jacob, Silverman, Jeffrey M., Tollerud, Erik, Walsh, Jonelle L., Woo, Jong-Hak, Williams, Peter R., Pancoast, Anna, Treu, Tommaso, Brewer, Brendon J., Barth, Aaron J., Bennert, Vardha N., Buehler, Tabitha, Canalizo, Gabriela, Cenko, S. Bradley, Clubb, Kelsey I., Cooper, Michael C., Filippenko, Alexei V., Gates, Elinor, Hoenig, Sebastian F., Joner, Michael D., Kandrashoff, Michael T., Laney, Clifton David, Lazarova, Mariana S., Li, Weidong, Malkan, Matthew A., Rex, Jacob, Silverman, Jeffrey M., Tollerud, Erik, Walsh, Jonelle L., and Woo, Jong-Hak
- Abstract
We present models of the H$\beta$-emitting broad-line region (BLR) in seven Seyfert 1 galaxies from the Lick AGN (Active Galactic Nucleus) Monitoring Project 2011 sample, drawing inferences on the BLR structure and dynamics as well as the mass of the central supermassive black hole. We find that the BLR is generally a thick disk, viewed close to face-on, with preferential emission back toward the ionizing source. The dynamics in our sample range from near-circular elliptical orbits to inflowing or outflowing trajectories. We measure black hole masses of $\log_{10}(M_{\rm BH}/M_\odot) = 6.48^{+0.21}_{-0.18}$ for PG 1310$-$108, $7.50^{+0.25}_{-0.18}$ for Mrk 50, $7.46^{+0.15}_{-0.21}$ for Mrk 141, $7.58^{+0.08}_{-0.08}$ for Mrk 279, $7.11^{+0.20}_{-0.17}$ for Mrk 1511, $6.65^{+0.27}_{-0.15}$ for NGC 4593, and $6.94^{+0.14}_{-0.14}$ for Zw 229$-$015. We use these black hole mass measurements along with cross-correlation time lags and line widths to recover the scale factor $f$ used in traditional reverberation mapping measurements. Combining our results with other studies that use this modeling technique, bringing our sample size to 16, we calculate a scale factor that can be used for measuring black hole masses in other reverberation mapping campaigns. When using the root-mean-square (rms) spectrum and using the line dispersion to measure the line width, we find $\log_{10}(f_{{\rm rms},\sigma})_{\rm pred} = 0.57 \pm 0.19$. Finally, we search for correlations between $f$ and other AGN and BLR parameters and find marginal evidence that $f$ is correlated with $M_{\rm BH}$ and the BLR inclination angle, but no significant evidence of a correlation with the AGN luminosity or Eddington ratio., Comment: 26 pages, 14 figures. Accepted for publication in ApJ
- Published
- 2018
- Full Text
- View/download PDF
32. Velocity-resolved reverberation mapping of five bright Seyfert 1 galaxies
- Author
-
De Rosa, G., Fausnaugh, M. M., Grier, C. J., Peterson, B. M., Denney, K. D., Horne, Keith, Bentz, M. C., Ciroi, S., Bonta`, E. Dalla, Joner, M. D., Kaspi, S., Kochanek, C. S., Pogge, R. W., Sergeev, S. G., Vestergaard, M., Adams, S. M., Antognini, J., Salvo, C. Araya, Armstrong, E., Bae, J., Barth, A. J., Beatty, T. G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, J. E., Brown, J. S., Brotherton, M. S., Coker, C. T., Clanton, C., Cracco, V., Crawford, S. M., Croxall, K. V., Eftekharzadeh, S., Eracleous, M., Fiorenza, S. L., Frassati, A., Hawkins, K., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kellar, J., Kilerci-Eser, E., Kim, S., King, A. L., La Mura, G., Laney, C. D., Li, M., Lochhaas, C., Ma, Z., MacInnis, F., Manne-Nicholas, E. R., Mason, M., McGraw, S. M., Mogren, K., Montouri, C., Moody, J. W., Mosquera, A. M., Mudd, D., Musso, R., Nazarov, S. V., Nguyen, M. L., Ochner, P., Okhmat, D. N., Onken, C. A., Ou-Yang, B., Pancoast, A., Pei, L., Penny, M., Poleski, R., Portaluri, E., Prieto, J. -L., Price-Whelan, A. M., Pulatova, N. G., Rafter, S., Roettenbacher, R. M., Romero-Colmenero, E., Runnoe, J., Schimoia, J. S., Shappee, B. J., Sherf, N., Simonian, G. V., Siviero, A., Skowron, D. M., Skowron, J., Somers, G., Spencer, M., Starkey, D. A., Stevens, D. J., Stoll, R., Tamajo, E., Tayar, J., van Saders, J. L., Valenti, S., Villanueva, Jr., S., Villforth, C., Weiss, Y., Winkler, H., Zastrow, J., Zhu, W., Zu, Y., De Rosa, G., Fausnaugh, M. M., Grier, C. J., Peterson, B. M., Denney, K. D., Horne, Keith, Bentz, M. C., Ciroi, S., Bonta`, E. Dalla, Joner, M. D., Kaspi, S., Kochanek, C. S., Pogge, R. W., Sergeev, S. G., Vestergaard, M., Adams, S. M., Antognini, J., Salvo, C. Araya, Armstrong, E., Bae, J., Barth, A. J., Beatty, T. G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, J. E., Brown, J. S., Brotherton, M. S., Coker, C. T., Clanton, C., Cracco, V., Crawford, S. M., Croxall, K. V., Eftekharzadeh, S., Eracleous, M., Fiorenza, S. L., Frassati, A., Hawkins, K., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kellar, J., Kilerci-Eser, E., Kim, S., King, A. L., La Mura, G., Laney, C. D., Li, M., Lochhaas, C., Ma, Z., MacInnis, F., Manne-Nicholas, E. R., Mason, M., McGraw, S. M., Mogren, K., Montouri, C., Moody, J. W., Mosquera, A. M., Mudd, D., Musso, R., Nazarov, S. V., Nguyen, M. L., Ochner, P., Okhmat, D. N., Onken, C. A., Ou-Yang, B., Pancoast, A., Pei, L., Penny, M., Poleski, R., Portaluri, E., Prieto, J. -L., Price-Whelan, A. M., Pulatova, N. G., Rafter, S., Roettenbacher, R. M., Romero-Colmenero, E., Runnoe, J., Schimoia, J. S., Shappee, B. J., Sherf, N., Simonian, G. V., Siviero, A., Skowron, D. M., Skowron, J., Somers, G., Spencer, M., Starkey, D. A., Stevens, D. J., Stoll, R., Tamajo, E., Tayar, J., van Saders, J. L., Valenti, S., Villanueva, Jr., S., Villforth, C., Weiss, Y., Winkler, H., Zastrow, J., Zhu, W., and Zu, Y.
- Abstract
We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one AGN (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-Hbeta reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure Hbeta time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity dependent Hbeta lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007., Comment: Accepted for publication on ApJ; 32 pages, 16 figures, 10 tables
- Published
- 2018
- Full Text
- View/download PDF
33. Stability of the Broad Line Region Geometry and Dynamics in Arp 151 Over Seven Years
- Author
-
Pancoast, A., Barth, A. J., Horne, K., Treu, T., Brewer, B. J., Bennert, V. N., Canalizo, G., Gates, E. L., Li, W., Malkan, M. A., Sand, D., Schmidt, T., Valenti, S., Woo, J. H., Clubb, K. I., Cooper, M. C., Crawford, S. M., Honig, S. F., Joner, M. D., Kandrashoff, M. T., Lazarova, M., Nierenberg, A. M., Romero-Colmenero, E., Son, D., Tollerud, E., Walsh, J. L., Winkler, H., Pancoast, A., Barth, A. J., Horne, K., Treu, T., Brewer, B. J., Bennert, V. N., Canalizo, G., Gates, E. L., Li, W., Malkan, M. A., Sand, D., Schmidt, T., Valenti, S., Woo, J. H., Clubb, K. I., Cooper, M. C., Crawford, S. M., Honig, S. F., Joner, M. D., Kandrashoff, M. T., Lazarova, M., Nierenberg, A. M., Romero-Colmenero, E., Son, D., Tollerud, E., Walsh, J. L., and Winkler, H.
- Abstract
The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning $2008-2015$. We present modeling of these velocity-resolved reverberation mapping datasets using a geometric and dynamical model for the broad line region (BLR). By modeling each of the three datasets independently, we infer the evolution of the BLR structure in Arp 151 over a total of seven years and constrain the systematic uncertainties in non-varying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of $\sim 2$. The dynamics of the BLR are dominated by inflow and the inferred black hole mass is consistent for the three datasets, despite the increase in BLR size. Combining the inference for the three datasets yields a black hole mass and statistical uncertainty of $\log_{10}($M$_{\rm BH}/\rm{M}_{\odot})=6.82^{+0.09}_{-0.09}$ with a standard deviation in individual measurements of 0.13 dex., Comment: 21 pages, 8 figures, 2 tables. Accepted for publication in ApJ
- Published
- 2018
- Full Text
- View/download PDF
34. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies
- Author
-
Fausnaugh, M. M., Starkey, D. A., Horne, Keith, Kochanek, C. S., Peterson, B. M., Bentz, M. C., Denney, K. D., Grier, C. J., Grupe, D., Pogge, R. W., DeRosa, G., Adams, S. M., Barth, A. J., Beatty, Thomas G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, Jacob E., Brown, Jonathan S., Brotherton, M. S., Coker, C. T., Crawford, S. M., Croxall, K. V., Eftekharzadeh, Sarah, Eracleous, Michael, Joner, M. D., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kaspi, Shai, Kim, S., King, Anthea L., Li, Miao, Lochhaas, Cassandra, Ma, Zhiyuan, MacInnis, F., Manne-Nicholas, E. R., Mason, M., Montuori, Carmen, Mosquera, Ana, Mudd, Dale, Musso, R., Nazarov, S. V., Nguyen, M. L., Okhmat, D. N., Onken, ChristopherA., Ou-Yang, B., Pancoast, A., Pei, L., Penny, Matthew T., Poleski, Radosław, Rafter, Stephen, Romero-Colmenero, E., Runnoe, Jessie, Sand, David J., Schimoia, Jaderson S., Sergeev, S. G., Shappee, B. J., Simonian, Gregory V., Somers, Garrett, Spencer, M., Stevens, Daniel J., Tayar, Jamie, Treu, T., Valenti, Stefano, VanSaders, J., VillanuevaJr., S., Villforth, C., Weiss, Yaniv, Winkler, H., Zhu, W., Fausnaugh, M. M., Starkey, D. A., Horne, Keith, Kochanek, C. S., Peterson, B. M., Bentz, M. C., Denney, K. D., Grier, C. J., Grupe, D., Pogge, R. W., DeRosa, G., Adams, S. M., Barth, A. J., Beatty, Thomas G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, Jacob E., Brown, Jonathan S., Brotherton, M. S., Coker, C. T., Crawford, S. M., Croxall, K. V., Eftekharzadeh, Sarah, Eracleous, Michael, Joner, M. D., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kaspi, Shai, Kim, S., King, Anthea L., Li, Miao, Lochhaas, Cassandra, Ma, Zhiyuan, MacInnis, F., Manne-Nicholas, E. R., Mason, M., Montuori, Carmen, Mosquera, Ana, Mudd, Dale, Musso, R., Nazarov, S. V., Nguyen, M. L., Okhmat, D. N., Onken, ChristopherA., Ou-Yang, B., Pancoast, A., Pei, L., Penny, Matthew T., Poleski, Radosław, Rafter, Stephen, Romero-Colmenero, E., Runnoe, Jessie, Sand, David J., Schimoia, Jaderson S., Sergeev, S. G., Shappee, B. J., Simonian, Gregory V., Somers, Garrett, Spencer, M., Stevens, Daniel J., Tayar, Jamie, Treu, T., Valenti, Stefano, VanSaders, J., VillanuevaJr., S., Villforth, C., Weiss, Yaniv, Winkler, H., and Zhu, W.
- Abstract
We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC\,2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of $\tau \propto \lambda^{4/3}$. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC\,2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC\,2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC\,2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models., Comment: Accepted to ApJ, please send comments to faus@mit.edu. 24 pages, 8 figures
- Published
- 2018
- Full Text
- View/download PDF
35. The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad-Line Region
- Author
-
Williams, Peter R., Pancoast, Anna, Treu, Tommaso, Brewer, Brendon J., Barth, Aaron J., Bennert, Vardha N., Buehler, Tabitha, Canalizo, Gabriela, Cenko, S. Bradley, Clubb, Kelsey I., Cooper, Michael C., Filippenko, Alexei V., Gates, Elinor, Hoenig, Sebastian F., Joner, Michael D., Kandrashoff, Michael T., Laney, Clifton David, Lazarova, Mariana S., Li, Weidong, Malkan, Matthew A., Rex, Jacob, Silverman, Jeffrey M., Tollerud, Erik, Walsh, Jonelle L., Woo, Jong-Hak, Williams, Peter R., Pancoast, Anna, Treu, Tommaso, Brewer, Brendon J., Barth, Aaron J., Bennert, Vardha N., Buehler, Tabitha, Canalizo, Gabriela, Cenko, S. Bradley, Clubb, Kelsey I., Cooper, Michael C., Filippenko, Alexei V., Gates, Elinor, Hoenig, Sebastian F., Joner, Michael D., Kandrashoff, Michael T., Laney, Clifton David, Lazarova, Mariana S., Li, Weidong, Malkan, Matthew A., Rex, Jacob, Silverman, Jeffrey M., Tollerud, Erik, Walsh, Jonelle L., and Woo, Jong-Hak
- Abstract
We present models of the H$\beta$-emitting broad-line region (BLR) in seven Seyfert 1 galaxies from the Lick AGN (Active Galactic Nucleus) Monitoring Project 2011 sample, drawing inferences on the BLR structure and dynamics as well as the mass of the central supermassive black hole. We find that the BLR is generally a thick disk, viewed close to face-on, with preferential emission back toward the ionizing source. The dynamics in our sample range from near-circular elliptical orbits to inflowing or outflowing trajectories. We measure black hole masses of $\log_{10}(M_{\rm BH}/M_\odot) = 6.48^{+0.21}_{-0.18}$ for PG 1310$-$108, $7.50^{+0.25}_{-0.18}$ for Mrk 50, $7.46^{+0.15}_{-0.21}$ for Mrk 141, $7.58^{+0.08}_{-0.08}$ for Mrk 279, $7.11^{+0.20}_{-0.17}$ for Mrk 1511, $6.65^{+0.27}_{-0.15}$ for NGC 4593, and $6.94^{+0.14}_{-0.14}$ for Zw 229$-$015. We use these black hole mass measurements along with cross-correlation time lags and line widths to recover the scale factor $f$ used in traditional reverberation mapping measurements. Combining our results with other studies that use this modeling technique, bringing our sample size to 16, we calculate a scale factor that can be used for measuring black hole masses in other reverberation mapping campaigns. When using the root-mean-square (rms) spectrum and using the line dispersion to measure the line width, we find $\log_{10}(f_{{\rm rms},\sigma})_{\rm pred} = 0.57 \pm 0.19$. Finally, we search for correlations between $f$ and other AGN and BLR parameters and find marginal evidence that $f$ is correlated with $M_{\rm BH}$ and the BLR inclination angle, but no significant evidence of a correlation with the AGN luminosity or Eddington ratio., Comment: 26 pages, 14 figures. Accepted for publication in ApJ
- Published
- 2018
- Full Text
- View/download PDF
36. Velocity-resolved reverberation mapping of five bright Seyfert 1 galaxies
- Author
-
De Rosa, G., Fausnaugh, M. M., Grier, C. J., Peterson, B. M., Denney, K. D., Horne, Keith, Bentz, M. C., Ciroi, S., Bonta`, E. Dalla, Joner, M. D., Kaspi, S., Kochanek, C. S., Pogge, R. W., Sergeev, S. G., Vestergaard, M., Adams, S. M., Antognini, J., Salvo, C. Araya, Armstrong, E., Bae, J., Barth, A. J., Beatty, T. G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, J. E., Brown, J. S., Brotherton, M. S., Coker, C. T., Clanton, C., Cracco, V., Crawford, S. M., Croxall, K. V., Eftekharzadeh, S., Eracleous, M., Fiorenza, S. L., Frassati, A., Hawkins, K., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kellar, J., Kilerci-Eser, E., Kim, S., King, A. L., La Mura, G., Laney, C. D., Li, M., Lochhaas, C., Ma, Z., MacInnis, F., Manne-Nicholas, E. R., Mason, M., McGraw, S. M., Mogren, K., Montouri, C., Moody, J. W., Mosquera, A. M., Mudd, D., Musso, R., Nazarov, S. V., Nguyen, M. L., Ochner, P., Okhmat, D. N., Onken, C. A., Ou-Yang, B., Pancoast, A., Pei, L., Penny, M., Poleski, R., Portaluri, E., Prieto, J. -L., Price-Whelan, A. M., Pulatova, N. G., Rafter, S., Roettenbacher, R. M., Romero-Colmenero, E., Runnoe, J., Schimoia, J. S., Shappee, B. J., Sherf, N., Simonian, G. V., Siviero, A., Skowron, D. M., Skowron, J., Somers, G., Spencer, M., Starkey, D. A., Stevens, D. J., Stoll, R., Tamajo, E., Tayar, J., van Saders, J. L., Valenti, S., Villanueva, Jr., S., Villforth, C., Weiss, Y., Winkler, H., Zastrow, J., Zhu, W., Zu, Y., De Rosa, G., Fausnaugh, M. M., Grier, C. J., Peterson, B. M., Denney, K. D., Horne, Keith, Bentz, M. C., Ciroi, S., Bonta`, E. Dalla, Joner, M. D., Kaspi, S., Kochanek, C. S., Pogge, R. W., Sergeev, S. G., Vestergaard, M., Adams, S. M., Antognini, J., Salvo, C. Araya, Armstrong, E., Bae, J., Barth, A. J., Beatty, T. G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, J. E., Brown, J. S., Brotherton, M. S., Coker, C. T., Clanton, C., Cracco, V., Crawford, S. M., Croxall, K. V., Eftekharzadeh, S., Eracleous, M., Fiorenza, S. L., Frassati, A., Hawkins, K., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kellar, J., Kilerci-Eser, E., Kim, S., King, A. L., La Mura, G., Laney, C. D., Li, M., Lochhaas, C., Ma, Z., MacInnis, F., Manne-Nicholas, E. R., Mason, M., McGraw, S. M., Mogren, K., Montouri, C., Moody, J. W., Mosquera, A. M., Mudd, D., Musso, R., Nazarov, S. V., Nguyen, M. L., Ochner, P., Okhmat, D. N., Onken, C. A., Ou-Yang, B., Pancoast, A., Pei, L., Penny, M., Poleski, R., Portaluri, E., Prieto, J. -L., Price-Whelan, A. M., Pulatova, N. G., Rafter, S., Roettenbacher, R. M., Romero-Colmenero, E., Runnoe, J., Schimoia, J. S., Shappee, B. J., Sherf, N., Simonian, G. V., Siviero, A., Skowron, D. M., Skowron, J., Somers, G., Spencer, M., Starkey, D. A., Stevens, D. J., Stoll, R., Tamajo, E., Tayar, J., van Saders, J. L., Valenti, S., Villanueva, Jr., S., Villforth, C., Weiss, Y., Winkler, H., Zastrow, J., Zhu, W., and Zu, Y.
- Abstract
We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one AGN (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-Hbeta reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure Hbeta time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity dependent Hbeta lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007., Comment: Accepted for publication on ApJ; 32 pages, 16 figures, 10 tables
- Published
- 2018
- Full Text
- View/download PDF
37. Stability of the Broad Line Region Geometry and Dynamics in Arp 151 Over Seven Years
- Author
-
Pancoast, A., Barth, A. J., Horne, K., Treu, T., Brewer, B. J., Bennert, V. N., Canalizo, G., Gates, E. L., Li, W., Malkan, M. A., Sand, D., Schmidt, T., Valenti, S., Woo, J. H., Clubb, K. I., Cooper, M. C., Crawford, S. M., Honig, S. F., Joner, M. D., Kandrashoff, M. T., Lazarova, M., Nierenberg, A. M., Romero-Colmenero, E., Son, D., Tollerud, E., Walsh, J. L., Winkler, H., Pancoast, A., Barth, A. J., Horne, K., Treu, T., Brewer, B. J., Bennert, V. N., Canalizo, G., Gates, E. L., Li, W., Malkan, M. A., Sand, D., Schmidt, T., Valenti, S., Woo, J. H., Clubb, K. I., Cooper, M. C., Crawford, S. M., Honig, S. F., Joner, M. D., Kandrashoff, M. T., Lazarova, M., Nierenberg, A. M., Romero-Colmenero, E., Son, D., Tollerud, E., Walsh, J. L., and Winkler, H.
- Abstract
The Seyfert 1 galaxy Arp 151 was monitored as part of three reverberation mapping campaigns spanning $2008-2015$. We present modeling of these velocity-resolved reverberation mapping datasets using a geometric and dynamical model for the broad line region (BLR). By modeling each of the three datasets independently, we infer the evolution of the BLR structure in Arp 151 over a total of seven years and constrain the systematic uncertainties in non-varying parameters such as the black hole mass. We find that the BLR geometry of a thick disk viewed close to face-on is stable over this time, although the size of the BLR grows by a factor of $\sim 2$. The dynamics of the BLR are dominated by inflow and the inferred black hole mass is consistent for the three datasets, despite the increase in BLR size. Combining the inference for the three datasets yields a black hole mass and statistical uncertainty of $\log_{10}($M$_{\rm BH}/\rm{M}_{\odot})=6.82^{+0.09}_{-0.09}$ with a standard deviation in individual measurements of 0.13 dex., Comment: 21 pages, 8 figures, 2 tables. Accepted for publication in ApJ
- Published
- 2018
- Full Text
- View/download PDF
38. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies
- Author
-
Fausnaugh, M. M., Starkey, D. A., Horne, Keith, Kochanek, C. S., Peterson, B. M., Bentz, M. C., Denney, K. D., Grier, C. J., Grupe, D., Pogge, R. W., DeRosa, G., Adams, S. M., Barth, A. J., Beatty, Thomas G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, Jacob E., Brown, Jonathan S., Brotherton, M. S., Coker, C. T., Crawford, S. M., Croxall, K. V., Eftekharzadeh, Sarah, Eracleous, Michael, Joner, M. D., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kaspi, Shai, Kim, S., King, Anthea L., Li, Miao, Lochhaas, Cassandra, Ma, Zhiyuan, MacInnis, F., Manne-Nicholas, E. R., Mason, M., Montuori, Carmen, Mosquera, Ana, Mudd, Dale, Musso, R., Nazarov, S. V., Nguyen, M. L., Okhmat, D. N., Onken, ChristopherA., Ou-Yang, B., Pancoast, A., Pei, L., Penny, Matthew T., Poleski, Radosław, Rafter, Stephen, Romero-Colmenero, E., Runnoe, Jessie, Sand, David J., Schimoia, Jaderson S., Sergeev, S. G., Shappee, B. J., Simonian, Gregory V., Somers, Garrett, Spencer, M., Stevens, Daniel J., Tayar, Jamie, Treu, T., Valenti, Stefano, VanSaders, J., VillanuevaJr., S., Villforth, C., Weiss, Yaniv, Winkler, H., Zhu, W., Fausnaugh, M. M., Starkey, D. A., Horne, Keith, Kochanek, C. S., Peterson, B. M., Bentz, M. C., Denney, K. D., Grier, C. J., Grupe, D., Pogge, R. W., DeRosa, G., Adams, S. M., Barth, A. J., Beatty, Thomas G., Bhattacharjee, A., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brown, Jacob E., Brown, Jonathan S., Brotherton, M. S., Coker, C. T., Crawford, S. M., Croxall, K. V., Eftekharzadeh, Sarah, Eracleous, Michael, Joner, M. D., Henderson, C. B., Holoien, T. W. -S., Hutchison, T., Kaspi, Shai, Kim, S., King, Anthea L., Li, Miao, Lochhaas, Cassandra, Ma, Zhiyuan, MacInnis, F., Manne-Nicholas, E. R., Mason, M., Montuori, Carmen, Mosquera, Ana, Mudd, Dale, Musso, R., Nazarov, S. V., Nguyen, M. L., Okhmat, D. N., Onken, ChristopherA., Ou-Yang, B., Pancoast, A., Pei, L., Penny, Matthew T., Poleski, Radosław, Rafter, Stephen, Romero-Colmenero, E., Runnoe, Jessie, Sand, David J., Schimoia, Jaderson S., Sergeev, S. G., Shappee, B. J., Simonian, Gregory V., Somers, Garrett, Spencer, M., Stevens, Daniel J., Tayar, Jamie, Treu, T., Valenti, Stefano, VanSaders, J., VillanuevaJr., S., Villforth, C., Weiss, Yaniv, Winkler, H., and Zhu, W.
- Abstract
We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC\,2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of $\tau \propto \lambda^{4/3}$. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC\,2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC\,2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC\,2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models., Comment: Accepted to ApJ, please send comments to faus@mit.edu. 24 pages, 8 figures
- Published
- 2018
- Full Text
- View/download PDF
39. Cash plus Care: parenting support and violence reduction programme associated with reductions in adolescent HIV-risks in South Africa: a cluster randomized trial of a DREAMS and 4Children-implemented programme 'Parenting for Lifelong Health'
- Author
-
Cluver, L., Meinck, F., Doubt, J., Ward, C., Lombard, C., Shenderovich, Y., Steinert, J., Romero, R., Medley, S., Redfern, A., Salah, N., De Stone, S., Ncobo, L., Lachman, J., Tsoanyane, S., Loening, H., Byrne, J., Sherr, L., Casale, M., Gardner, F., Wittesaele, C., Catanho, R., Hoeksma, S., Mikton, C., vanderWal, J., Nocuza, M., Pancoast, M., Danisa, M., Wessels, I., Masuku-Mukadah, N., Boyes, Mark, Nzima, D., Sibanda, N., Cluver, L., Meinck, F., Doubt, J., Ward, C., Lombard, C., Shenderovich, Y., Steinert, J., Romero, R., Medley, S., Redfern, A., Salah, N., De Stone, S., Ncobo, L., Lachman, J., Tsoanyane, S., Loening, H., Byrne, J., Sherr, L., Casale, M., Gardner, F., Wittesaele, C., Catanho, R., Hoeksma, S., Mikton, C., vanderWal, J., Nocuza, M., Pancoast, M., Danisa, M., Wessels, I., Masuku-Mukadah, N., Boyes, Mark, Nzima, D., and Sibanda, N.
- Published
- 2018
40. A New Method for Measuring Black Hole Masses in Active Galaxies: Modeling the Broad Line Region Using Reverberation Mapping Data
- Author
-
Pancoast, Anna Kathryn, Treu, Tommaso1, Pancoast, Anna Kathryn, Pancoast, Anna Kathryn, Treu, Tommaso1, and Pancoast, Anna Kathryn
- Abstract
Measuring the masses of supermassive black holes in active galactic nuclei (AGN) allows us to trace their evolution over cosmic time and understand how black holes coevolve with their host galaxies. We present a new technique to measure black hole masses and constrain the structure of the broad line region in AGN using reverberation mapping data. We begin by developing a simply parameterized phenomenological model of the broad line region geometry and dynamics and apply this model to high-quality reverberation mapping data for six AGN from the Lick AGN Monitoring Project 2008 and 2011 datasets. The results of this analysis provide the most precise AGN black hole masses from reverberation mapping to date and the first detailed constraints on the geometry and dynamics of the broad line region emission. Specifically, we find that the shape of the broad line region is generally a close to face-on thick disk with preferential emission from the far side, and that the dynamics range from inflow to near-circular orbits. In addition, we present photometric AGN light curves using image subtraction for the Lick AGN Monitoring Project 2011 dataset as a first step towards modeling the broad line region in a larger sample of AGN.
- Published
- 2015
41. A New Method for Measuring Black Hole Masses in Active Galaxies: Modeling the Broad Line Region Using Reverberation Mapping Data
- Author
-
Pancoast, Anna Kathryn, Treu, Tommaso1, Pancoast, Anna Kathryn, Pancoast, Anna Kathryn, Treu, Tommaso1, and Pancoast, Anna Kathryn
- Abstract
Measuring the masses of supermassive black holes in active galactic nuclei (AGN) allows us to trace their evolution over cosmic time and understand how black holes coevolve with their host galaxies. We present a new technique to measure black hole masses and constrain the structure of the broad line region in AGN using reverberation mapping data. We begin by developing a simply parameterized phenomenological model of the broad line region geometry and dynamics and apply this model to high-quality reverberation mapping data for six AGN from the Lick AGN Monitoring Project 2008 and 2011 datasets. The results of this analysis provide the most precise AGN black hole masses from reverberation mapping to date and the first detailed constraints on the geometry and dynamics of the broad line region emission. Specifically, we find that the shape of the broad line region is generally a close to face-on thick disk with preferential emission from the far side, and that the dynamics range from inflow to near-circular orbits. In addition, we present photometric AGN light curves using image subtraction for the Lick AGN Monitoring Project 2011 dataset as a first step towards modeling the broad line region in a larger sample of AGN.
- Published
- 2015
42. SPACE TELESCOPE and OPTICAL REVERBERATION MAPPING PROJECT.VI. REVERBERATING DISK MODELS for NGC 5548
- Author
-
Starkey, D, Starkey, D, Horne, K, Fausnaugh, MM, Peterson, BM, Bentz, MC, Kochanek, CS, Denney, KD, Edelson, R, Goad, MR, Rosa, GD, Anderson, MD, Arévalo, P, Barth, AJ, Bazhaw, C, Borman, GA, Boroson, TA, Bottorff, MC, Brandt, WN, Breeveld, AA, Cackett, EM, Carini, MT, Croxall, KV, Crenshaw, DM, Dalla Bontà, E, Lorenzo-Cáceres, AD, Dietrich, M, Efimova, NV, Ely, J, Evans, PA, Filippenko, AV, Flatland, K, Gehrels, N, Geier, S, Gelbord, JM, Gonzalez, L, Gorjian, V, Grier, CJ, Grupe, D, Hall, PB, Hicks, S, Horenstein, D, Hutchison, T, Im, M, Jensen, JJ, Joner, MD, Jones, J, Kaastra, J, Kaspi, S, Kelly, BC, Kennea, JA, Kim, SC, Kim, M, Klimanov, SA, Korista, KT, Kriss, GA, Lee, JC, Leonard, DC, Lira, P, Macinnis, F, Manne-Nicholas, ER, Mathur, S, McHardy, IM, Montouri, C, Musso, R, Nazarov, SV, Norris, RP, Nousek, JA, Okhmat, DN, Pancoast, A, Parks, JR, Pei, L, Pogge, RW, Pott, JU, Rafter, SE, Rix, HW, Saylor, DA, Schimoia, JS, Schnülle, K, Sergeev, SG, Siegel, MH, Spencer, M, Sung, HI, Teems, KG, Turner, CS, Uttley, P, Vestergaard, M, Villforth, C, Weiss, Y, Woo, JH, Yan, H, Young, AS, Zheng, W, Zu, Y, Starkey, D, Starkey, D, Horne, K, Fausnaugh, MM, Peterson, BM, Bentz, MC, Kochanek, CS, Denney, KD, Edelson, R, Goad, MR, Rosa, GD, Anderson, MD, Arévalo, P, Barth, AJ, Bazhaw, C, Borman, GA, Boroson, TA, Bottorff, MC, Brandt, WN, Breeveld, AA, Cackett, EM, Carini, MT, Croxall, KV, Crenshaw, DM, Dalla Bontà, E, Lorenzo-Cáceres, AD, Dietrich, M, Efimova, NV, Ely, J, Evans, PA, Filippenko, AV, Flatland, K, Gehrels, N, Geier, S, Gelbord, JM, Gonzalez, L, Gorjian, V, Grier, CJ, Grupe, D, Hall, PB, Hicks, S, Horenstein, D, Hutchison, T, Im, M, Jensen, JJ, Joner, MD, Jones, J, Kaastra, J, Kaspi, S, Kelly, BC, Kennea, JA, Kim, SC, Kim, M, Klimanov, SA, Korista, KT, Kriss, GA, Lee, JC, Leonard, DC, Lira, P, Macinnis, F, Manne-Nicholas, ER, Mathur, S, McHardy, IM, Montouri, C, Musso, R, Nazarov, SV, Norris, RP, Nousek, JA, Okhmat, DN, Pancoast, A, Parks, JR, Pei, L, Pogge, RW, Pott, JU, Rafter, SE, Rix, HW, Saylor, DA, Schimoia, JS, Schnülle, K, Sergeev, SG, Siegel, MH, Spencer, M, Sung, HI, Teems, KG, Turner, CS, Uttley, P, Vestergaard, M, Villforth, C, Weiss, Y, Woo, JH, Yan, H, Young, AS, Zheng, W, and Zu, Y
- Abstract
We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 A oto 9157 A o) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36° ±10° temperature T1 = 44 ±6 ) × 10 3 K at 1 light day from the black hole, and a temperatureradius slope (T ∞r-a) of a = 0.99 ±0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L LEdd = 0.1.
- Published
- 2017
43. AGN photoionization of gas in companion galaxies as a probe of AGN radiation in time and direction
- Author
-
Keel, William C., Bennert, Vardha N., Pancoast, Anna, Harris, Chelsea E., Nierenberg, Anna, Chojnowaki, S. Drew, Moiseev, Alexei V., Oparin, Dmitry V., Lintott, Chris J., Schawinski, Kevin, Mitchell, Graham, Cornen, Claude, Keel, William C., Bennert, Vardha N., Pancoast, Anna, Harris, Chelsea E., Nierenberg, Anna, Chojnowaki, S. Drew, Moiseev, Alexei V., Oparin, Dmitry V., Lintott, Chris J., Schawinski, Kevin, Mitchell, Graham, and Cornen, Claude
- Abstract
We consider AGN photoionization of gas in companion galaxies (cross-ionization) as a way to sample the intensity of AGN radiation in both direction and time, independent of the gas properties of the AGN host galaxies. From an initial set of 212 AGN+companion systems, identified with the help of Galaxy Zoo participants, we obtained long-slit optical spectra of 32 pairs which were a priori likely to show cross-ionization based on projected separation or angular extent of the companion. From emission-line ratios, 10 of these systems are candidates for cross-ionization, roughly the fraction expected if most AGN have ionization cones with 70-degree opening angles. Among these, Was 49 remains the strongest nearby candidate. NGC 5278/9 and UGC 6081 are dual-AGN systems with tidal debris, complicating identification of cross-ionization. The two weak AGN in the NGC 5278/9 system ionize gas filaments to a projected radius 14 kpc from each galaxy. In UGC 6081, an irregular high-ionization emission region encompasses both AGN, extending more than 15 kpc from each. The observed AGN companion galaxies with and without signs of external AGN photoionization have similar distributions in estimated incident AGN flux, suggesting that geometry of escaping radiation or long-term variability control this facet of the AGN environment. This parallels conclusions for luminous QSOs based on the proximity effect among Lyman-alpha absorbers. In some galaxies, mismatch between spectroscopic classifications in the common BPT diagram and the intensity of weaker He II and [Ne V] emission lines highlights the limits of common classifications in low-metallicity environments., Comment: Accepted version to appear in MNRAS. New version has spectra showing AGN ionization in NGC 5278/9 filaments and tunable-filter mapping of clouds around UGC 6081 system
- Published
- 2017
- Full Text
- View/download PDF
44. The Structure of the Broad-Line Region In Active Galactic Nuclei. II. Dynamical Modeling of Data from the AGN10 Reverberation Mapping Campaign
- Author
-
Grier, C. J., Pancoast, A., Barth, A. J., Fausnaugh, M. M., Brewer, B. J., Treu, T., Peterson, B. M., Grier, C. J., Pancoast, A., Barth, A. J., Fausnaugh, M. M., Brewer, B. J., Treu, T., and Peterson, B. M.
- Abstract
We present inferences on the geometry and kinematics of the broad-Hbeta line-emitting region in four active galactic nuclei monitored as a part of the fall 2010 reverberation mapping campaign at MDM Observatory led by the Ohio State University. From modeling the continuum variability and response in emission-line profile changes as a function of time, we infer the geometry of the Hbeta- emitting broad line regions to be thick disks that are close to face-on to the observer with kinematics that are well-described by either elliptical orbits or inflowing gas. We measure the black hole mass to be log (MBH) = 7.25 (+/-0.10) for Mrk 335, 7.86 (+0.20, -0.17) for Mrk 1501, 7.84 (+0.14, -0.19) for 3C 120, and 6.92 (+0.24, -0.23) for PG 2130+099. These black hole mass measurements are not based on a particular assumed value of the virial scale factor f, allowing us to compute individual f factors for each target. Our results nearly double the number of targets that have been modeled in this manner, and investigate the properties of a more diverse sample by including previously modeled objects. We measure an average scale factor f in the entire sample to be log10(f) = 0.54 +/- 0.17 when the line dispersion is used to characterize the line width, which is consistent with values derived using the normalization of the MBH-sigma relation. We find that the scale factor f for individual targets is likely correlated with the black hole mass, inclination angle, and opening angle of the broad line region but we do not find any correlation with the luminosity., Comment: 19 pages, 13 Figures. Accepted for publication in ApJ
- Published
- 2017
- Full Text
- View/download PDF
45. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the UV anomaly in NGC 5548 with X-Ray Spectroscopy
- Author
-
Mathur, S., Gupta, A., Page, K., Pogge, R. W., Krongold, Y., Goad, M. R., Adams, S. M., Anderson, M. D., Arevalo, P., Barth, A. J., Bazhaw, C., Beatty, T. G., Bentz, M. C., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Coker, C. T., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Bonta, E. Dalla, Deason, A. J., Denney, K. D., De Lorenzo-Caceres, A., De Rosa, G., Dietrich, M., Edelson, R., Ely, J., Eracleous, M., Evans, P. A., Fausnaugh, M. M., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gorjian, V., Greene, J. E., Grier, C. J., Grupe, D., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Horenstein, D., Horne, Keith, Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaastra, J., Kaspi, S., Kelly, B. C., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Kochanek, C. S., Korista, K. T., Kriss, G. A., Lau, M. W., Lee, J. C., Leonard, D. C., Li, M., Lira, P., Ma, Z., MacInnis, F., Manne-Nicholas, E. R., Malkan, M. A., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montouri, C., Morelli, L., Mosquera, A., Mudd, D., Muller-Sanchez, F., Musso, R., Nazarov, S. V., Netzer, H., Nguyen, M. L., Norris, R. P., Nousek, J. A., Ochner, P., Okhmat, D. N., Ou-Yang, B., Pancoast, A., Papadakis, I., Parks, J. R., Pei, L., Peterson, B. M., Pizzella, A., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnülle, K., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Tejos, N., Turner, C. S., Uttley, P., Van Saders, J., Vestergaard, M., Vican, L., VillanuevaJr., S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., Zu, Y., Mathur, S., Gupta, A., Page, K., Pogge, R. W., Krongold, Y., Goad, M. R., Adams, S. M., Anderson, M. D., Arevalo, P., Barth, A. J., Bazhaw, C., Beatty, T. G., Bentz, M. C., Bigley, A., Bisogni, S., Borman, G. A., Boroson, T. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Brown, J. E., Brown, J. S., Cackett, E. M., Canalizo, G., Carini, M. T., Clubb, K. I., Comerford, J. M., Coker, C. T., Corsini, E. M., Crenshaw, D. M., Croft, S., Croxall, K. V., Bonta, E. Dalla, Deason, A. J., Denney, K. D., De Lorenzo-Caceres, A., De Rosa, G., Dietrich, M., Edelson, R., Ely, J., Eracleous, M., Evans, P. A., Fausnaugh, M. M., Ferland, G. J., Filippenko, A. V., Flatland, K., Fox, O. D., Gates, E. L., Gehrels, N., Geier, S., Gelbord, J. M., Gorjian, V., Greene, J. E., Grier, C. J., Grupe, D., Hall, P. B., Henderson, C. B., Hicks, S., Holmbeck, E., Holoien, T. W. -S., Horenstein, D., Horne, Keith, Hutchison, T., Im, M., Jensen, J. J., Johnson, C. A., Joner, M. D., Jones, J., Kaastra, J., Kaspi, S., Kelly, B. C., Kelly, P. L., Kennea, J. A., Kim, M., Kim, S., Kim, S. C., King, A., Klimanov, S. A., Kochanek, C. S., Korista, K. T., Kriss, G. A., Lau, M. W., Lee, J. C., Leonard, D. C., Li, M., Lira, P., Ma, Z., MacInnis, F., Manne-Nicholas, E. R., Malkan, M. A., Mauerhan, J. C., McGurk, R., McHardy, I. M., Montouri, C., Morelli, L., Mosquera, A., Mudd, D., Muller-Sanchez, F., Musso, R., Nazarov, S. V., Netzer, H., Nguyen, M. L., Norris, R. P., Nousek, J. A., Ochner, P., Okhmat, D. N., Ou-Yang, B., Pancoast, A., Papadakis, I., Parks, J. R., Pei, L., Peterson, B. M., Pizzella, A., Poleski, R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Runnoe, J., Saylor, D. A., Schimoia, J. S., Schnülle, K., Sergeev, S. G., Shappee, B. J., Shivvers, I., Siegel, M., Simonian, G. V., Siviero, A., Skielboe, A., Somers, G., Spencer, M., Starkey, D., Stevens, D. J., Sung, H. -I., Tayar, J., Tejos, N., Turner, C. S., Uttley, P., Van Saders, J., Vestergaard, M., Vican, L., VillanuevaJr., S., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Yuk, H., Zheng, W., Zhu, W., and Zu, Y.
- Abstract
During the Space Telescope and Optical Reverberation Mapping Project (STORM) observations of NGC 5548, the continuum and emission-line variability became de-correlated during the second half of the 6-month long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as a part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than being due to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all the three observations: the UV emission line flux decrease, the soft-excess increase, and the emission line anomaly., Comment: ApJ in press. Replaced with the accepted version
- Published
- 2017
- Full Text
- View/download PDF
46. Extending the Calibration of CIV-Based Single-Epoch Black Hole Mass Estimators for Active Galactic Nuclei
- Author
-
Park, Daeseong, Barth, Aaron J., Woo, Jong-Hak, Malkan, Matthew A., Treu, Tommaso, Bennert, Vardha N., Assef, Roberto J., Pancoast, Anna, Park, Daeseong, Barth, Aaron J., Woo, Jong-Hak, Malkan, Matthew A., Treu, Tommaso, Bennert, Vardha N., Assef, Roberto J., and Pancoast, Anna
- Abstract
We provide an updated calibration of CIV $\lambda1549$ broad emission line-based single-epoch (SE) black hole (BH) mass estimators for active galactic nuclei (AGNs) using new data for six reverberation-mapped AGNs at redshift $z=0.005-0.028$ with BH masses (bolometric luminosities) in the range $10^{6.5}-10^{7.5}$ $M_{\odot}$ ($10^{41.7}-10^{43.8}$ erg s$^{\rm -1}$). New rest-frame UV-to-optical spectra covering 1150-5700 \AA\ for the six AGNs were obtained with the Hubble Space Telescope (HST). Multi-component spectral decompositions of the HST spectra were used to measure SE emission-line widths for the CIV, MgII, and H$\beta$ lines as well as continuum luminosities in the spectral region around each line. We combine the new data with similar measurements for a previous archival sample of 25 AGNs to derive the most consistent and accurate calibrations of the CIV-based SE BH mass estimators against the H$\beta$ reverberation-based masses, using three different measures of broad-line width: full-width at half maximum (FWHM), line dispersion ($\sigma_{\rm line}$) and mean absolute deviation (MAD). The newly expanded sample at redshift $z=0.005-0.234$ covers a dynamic range in BH mass (bolometric luminosity) of $\log\ M_{\rm BH}/M_{\odot} = 6.5-9.1$ ($\log\ L_{\rm bol}/$erg s$^{\rm -1}=41.7-46.9$), and we derive the new CIV-based mass estimators using a Bayesian linear regression analysis over this range. We generally recommend the use of $\sigma_{\rm line}$ or MAD rather than FWHM to obtain a less biased velocity measurement of the CIV emission line, because its narrow-line component contribution is difficult to decompose from the broad-line profile., Comment: Accepted for publication in ApJ
- Published
- 2017
- Full Text
- View/download PDF
47. Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-Line Analysis for NGC 5548
- Author
-
Pei, L., Fausnaugh, M. M., Barth, A. J., Peterson, B. M., Bentz, M. C., De Rosa, G., Denney, K. D., Goad, M. R., Kochanek, C. S., Korista, K. T., Kriss, G. A., Pogge, R. W., Bennert, V. N., Brotherton, M., Clubb, K. I., Bontà, E. Dalla, Filippenko, A. V., Greene, J. E., Grier, C. J., Vestergaard, M., Zheng, W., Adams, Scott M., Beatty, Thomas G., Bigley, A., Brown, Jacob E., Brown, Jonathan S., Canalizo, G., Comerford, J. M., Coker, Carl T., Corsini, E. M., Croft, S., Croxall, K. V., Deason, A. J., Eracleous, Michael, Fox, O. D., Gates, E. L., Henderson, C. B., Holmbeck, E., Holoien, T. W. -S., Jensen, J. J., Johnson, C. A., Kelly, P. L., Kim, S., King, A., Lau, M. W., Li, Miao, Lochhaas, Cassandra, Ma, Zhiyuan, Manne-Nicholas, E. R., Mauerhan, J. C., Malkan, M. A., McGurk, R., Morelli, L., Mosquera, Ana, Mudd, Dale, Sanchez, F. Muller, Nguyen, M. L., Ochner, P., Ou-Yang, B., Pancoast, A., Penny, Matthew T., Pizzella, A., Poleski, Radosław, Runnoe, Jessie, Scott, B., Schimoia, Jaderson S., Shappee, B. J., Shivvers, I., Simonian, Gregory V., Siviero, A., Somers, Garrett, Stevens, Daniel J., Strauss, M. A., Tayar, Jamie, Tejos, N., Treu, T., Van Saders, J., Vican, L., Villanueva Jr., S., Yuk, H., Zakamska, N. L., Zhu, W., Anderson, M. D., Arévalo, P., Bazhaw, C., Bisogni, S., Borman, G. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Cackett, E. M., Carini, M. T., Crenshaw, D. M., De Lorenzo-Cáceres, A., Dietrich, M., Edelson, R., Efimova, N. V., Ely, J., Evans, P. A., Ferland, G. J., Flatland, K., Gehrels, N., Geier, S., Gelbord, J. M., Grupe, D., Gupta, A., Hall, P. B., Hicks, S., Horenstein, D., Horne, Keith, Hutchison, T., Im, M., Joner, M. D., Jones, J., Kaastra, J., Kaspi, S., Kelly, B. C., Kennea, J. A., Kim, M., Kim, S. C., Klimanov, S. A., Lee, J. C., Leonard, D. C., Lira, P., MacInnis, F., Mathur, S., McHardy, I. M., Montouri, C., Musso, R., Nazarov, S. V., Netzer, H., Norris, R. P., Nousek, J. A., Okhmat, D. N., Papadakis, I., Parks, J. R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Saylor, D. A., Schnülle, K., Sergeev, S. G., Siegel, M., Skielboe, A., Spencer, M., Starkey, D., Sung, H. -I., Teems, K. G., Turner, C. S., Uttley, P., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., Zu, Y., Pei, L., Fausnaugh, M. M., Barth, A. J., Peterson, B. M., Bentz, M. C., De Rosa, G., Denney, K. D., Goad, M. R., Kochanek, C. S., Korista, K. T., Kriss, G. A., Pogge, R. W., Bennert, V. N., Brotherton, M., Clubb, K. I., Bontà, E. Dalla, Filippenko, A. V., Greene, J. E., Grier, C. J., Vestergaard, M., Zheng, W., Adams, Scott M., Beatty, Thomas G., Bigley, A., Brown, Jacob E., Brown, Jonathan S., Canalizo, G., Comerford, J. M., Coker, Carl T., Corsini, E. M., Croft, S., Croxall, K. V., Deason, A. J., Eracleous, Michael, Fox, O. D., Gates, E. L., Henderson, C. B., Holmbeck, E., Holoien, T. W. -S., Jensen, J. J., Johnson, C. A., Kelly, P. L., Kim, S., King, A., Lau, M. W., Li, Miao, Lochhaas, Cassandra, Ma, Zhiyuan, Manne-Nicholas, E. R., Mauerhan, J. C., Malkan, M. A., McGurk, R., Morelli, L., Mosquera, Ana, Mudd, Dale, Sanchez, F. Muller, Nguyen, M. L., Ochner, P., Ou-Yang, B., Pancoast, A., Penny, Matthew T., Pizzella, A., Poleski, Radosław, Runnoe, Jessie, Scott, B., Schimoia, Jaderson S., Shappee, B. J., Shivvers, I., Simonian, Gregory V., Siviero, A., Somers, Garrett, Stevens, Daniel J., Strauss, M. A., Tayar, Jamie, Tejos, N., Treu, T., Van Saders, J., Vican, L., Villanueva Jr., S., Yuk, H., Zakamska, N. L., Zhu, W., Anderson, M. D., Arévalo, P., Bazhaw, C., Bisogni, S., Borman, G. A., Bottorff, M. C., Brandt, W. N., Breeveld, A. A., Cackett, E. M., Carini, M. T., Crenshaw, D. M., De Lorenzo-Cáceres, A., Dietrich, M., Edelson, R., Efimova, N. V., Ely, J., Evans, P. A., Ferland, G. J., Flatland, K., Gehrels, N., Geier, S., Gelbord, J. M., Grupe, D., Gupta, A., Hall, P. B., Hicks, S., Horenstein, D., Horne, Keith, Hutchison, T., Im, M., Joner, M. D., Jones, J., Kaastra, J., Kaspi, S., Kelly, B. C., Kennea, J. A., Kim, M., Kim, S. C., Klimanov, S. A., Lee, J. C., Leonard, D. C., Lira, P., MacInnis, F., Mathur, S., McHardy, I. M., Montouri, C., Musso, R., Nazarov, S. V., Netzer, H., Norris, R. P., Nousek, J. A., Okhmat, D. N., Papadakis, I., Parks, J. R., Pott, J. -U., Rafter, S. E., Rix, H. -W., Saylor, D. A., Schnülle, K., Sergeev, S. G., Siegel, M., Skielboe, A., Spencer, M., Starkey, D., Sung, H. -I., Teems, K. G., Turner, C. S., Uttley, P., Villforth, C., Weiss, Y., Woo, J. -H., Yan, H., Young, S., and Zu, Y.
- Abstract
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multi-wavelength reverberation mapping campaign. The campaign spanned six months and achieved an almost daily cadence with observations from five ground-based telescopes. The H$\beta$ and He II $\lambda$4686 broad emission-line light curves lag that of the 5100 $\AA$ optical continuum by $4.17^{+0.36}_{-0.36}$ days and $0.79^{+0.35}_{-0.34}$ days, respectively. The H$\beta$ lag relative to the 1158 $\AA$ ultraviolet continuum light curve measured by the Hubble Space Telescope is roughly $\sim$50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is $\sim$50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for H$\beta$ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the H$\beta$ and He II $\lambda$4686 emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Ly $\alpha$, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured H$\beta$ lag is a factor of five shorter than the expected value implied by the $R_\mathrm{BLR} - L_\mathrm{AGN}$ relation based on the past behavior of NGC 5548., Comment: 22 pages, 13 figures, accepted to ApJ
- Published
- 2017
- Full Text
- View/download PDF
48. SPACE TELESCOPE and OPTICAL REVERBERATION MAPPING PROJECT.VI. REVERBERATING DISK MODELS for NGC 5548
- Author
-
Starkey, D, Starkey, D, Horne, K, Fausnaugh, MM, Peterson, BM, Bentz, MC, Kochanek, CS, Denney, KD, Edelson, R, Goad, MR, Rosa, GD, Anderson, MD, Arévalo, P, Barth, AJ, Bazhaw, C, Borman, GA, Boroson, TA, Bottorff, MC, Brandt, WN, Breeveld, AA, Cackett, EM, Carini, MT, Croxall, KV, Crenshaw, DM, Dalla Bontà, E, Lorenzo-Cáceres, AD, Dietrich, M, Efimova, NV, Ely, J, Evans, PA, Filippenko, AV, Flatland, K, Gehrels, N, Geier, S, Gelbord, JM, Gonzalez, L, Gorjian, V, Grier, CJ, Grupe, D, Hall, PB, Hicks, S, Horenstein, D, Hutchison, T, Im, M, Jensen, JJ, Joner, MD, Jones, J, Kaastra, J, Kaspi, S, Kelly, BC, Kennea, JA, Kim, SC, Kim, M, Klimanov, SA, Korista, KT, Kriss, GA, Lee, JC, Leonard, DC, Lira, P, Macinnis, F, Manne-Nicholas, ER, Mathur, S, McHardy, IM, Montouri, C, Musso, R, Nazarov, SV, Norris, RP, Nousek, JA, Okhmat, DN, Pancoast, A, Parks, JR, Pei, L, Pogge, RW, Pott, JU, Rafter, SE, Rix, HW, Saylor, DA, Schimoia, JS, Schnülle, K, Sergeev, SG, Siegel, MH, Spencer, M, Sung, HI, Teems, KG, Turner, CS, Uttley, P, Vestergaard, M, Villforth, C, Weiss, Y, Woo, JH, Yan, H, Young, AS, Zheng, W, Zu, Y, Starkey, D, Starkey, D, Horne, K, Fausnaugh, MM, Peterson, BM, Bentz, MC, Kochanek, CS, Denney, KD, Edelson, R, Goad, MR, Rosa, GD, Anderson, MD, Arévalo, P, Barth, AJ, Bazhaw, C, Borman, GA, Boroson, TA, Bottorff, MC, Brandt, WN, Breeveld, AA, Cackett, EM, Carini, MT, Croxall, KV, Crenshaw, DM, Dalla Bontà, E, Lorenzo-Cáceres, AD, Dietrich, M, Efimova, NV, Ely, J, Evans, PA, Filippenko, AV, Flatland, K, Gehrels, N, Geier, S, Gelbord, JM, Gonzalez, L, Gorjian, V, Grier, CJ, Grupe, D, Hall, PB, Hicks, S, Horenstein, D, Hutchison, T, Im, M, Jensen, JJ, Joner, MD, Jones, J, Kaastra, J, Kaspi, S, Kelly, BC, Kennea, JA, Kim, SC, Kim, M, Klimanov, SA, Korista, KT, Kriss, GA, Lee, JC, Leonard, DC, Lira, P, Macinnis, F, Manne-Nicholas, ER, Mathur, S, McHardy, IM, Montouri, C, Musso, R, Nazarov, SV, Norris, RP, Nousek, JA, Okhmat, DN, Pancoast, A, Parks, JR, Pei, L, Pogge, RW, Pott, JU, Rafter, SE, Rix, HW, Saylor, DA, Schimoia, JS, Schnülle, K, Sergeev, SG, Siegel, MH, Spencer, M, Sung, HI, Teems, KG, Turner, CS, Uttley, P, Vestergaard, M, Villforth, C, Weiss, Y, Woo, JH, Yan, H, Young, AS, Zheng, W, and Zu, Y
- Abstract
We conduct a multiwavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 A oto 9157 A o) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36° ±10° temperature T1 = 44 ±6 ) × 10 3 K at 1 light day from the black hole, and a temperatureradius slope (T ∞r-a) of a = 0.99 ±0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L LEdd = 0.1.
- Published
- 2017
49. AGN photoionization of gas in companion galaxies as a probe of AGN radiation in time and direction
- Author
-
Keel, William C., Bennert, Vardha N., Pancoast, Anna, Harris, Chelsea E., Nierenberg, Anna, Chojnowaki, S. Drew, Moiseev, Alexei V., Oparin, Dmitry V., Lintott, Chris J., Schawinski, Kevin, Mitchell, Graham, Cornen, Claude, Keel, William C., Bennert, Vardha N., Pancoast, Anna, Harris, Chelsea E., Nierenberg, Anna, Chojnowaki, S. Drew, Moiseev, Alexei V., Oparin, Dmitry V., Lintott, Chris J., Schawinski, Kevin, Mitchell, Graham, and Cornen, Claude
- Abstract
We consider AGN photoionization of gas in companion galaxies (cross-ionization) as a way to sample the intensity of AGN radiation in both direction and time, independent of the gas properties of the AGN host galaxies. From an initial set of 212 AGN+companion systems, identified with the help of Galaxy Zoo participants, we obtained long-slit optical spectra of 32 pairs which were a priori likely to show cross-ionization based on projected separation or angular extent of the companion. From emission-line ratios, 10 of these systems are candidates for cross-ionization, roughly the fraction expected if most AGN have ionization cones with 70-degree opening angles. Among these, Was 49 remains the strongest nearby candidate. NGC 5278/9 and UGC 6081 are dual-AGN systems with tidal debris, complicating identification of cross-ionization. The two weak AGN in the NGC 5278/9 system ionize gas filaments to a projected radius 14 kpc from each galaxy. In UGC 6081, an irregular high-ionization emission region encompasses both AGN, extending more than 15 kpc from each. The observed AGN companion galaxies with and without signs of external AGN photoionization have similar distributions in estimated incident AGN flux, suggesting that geometry of escaping radiation or long-term variability control this facet of the AGN environment. This parallels conclusions for luminous QSOs based on the proximity effect among Lyman-alpha absorbers. In some galaxies, mismatch between spectroscopic classifications in the common BPT diagram and the intensity of weaker He II and [Ne V] emission lines highlights the limits of common classifications in low-metallicity environments., Comment: Accepted version to appear in MNRAS. New version has spectra showing AGN ionization in NGC 5278/9 filaments and tunable-filter mapping of clouds around UGC 6081 system
- Published
- 2017
- Full Text
- View/download PDF
50. The Structure of the Broad-Line Region In Active Galactic Nuclei. II. Dynamical Modeling of Data from the AGN10 Reverberation Mapping Campaign
- Author
-
Grier, C. J., Pancoast, A., Barth, A. J., Fausnaugh, M. M., Brewer, B. J., Treu, T., Peterson, B. M., Grier, C. J., Pancoast, A., Barth, A. J., Fausnaugh, M. M., Brewer, B. J., Treu, T., and Peterson, B. M.
- Abstract
We present inferences on the geometry and kinematics of the broad-Hbeta line-emitting region in four active galactic nuclei monitored as a part of the fall 2010 reverberation mapping campaign at MDM Observatory led by the Ohio State University. From modeling the continuum variability and response in emission-line profile changes as a function of time, we infer the geometry of the Hbeta- emitting broad line regions to be thick disks that are close to face-on to the observer with kinematics that are well-described by either elliptical orbits or inflowing gas. We measure the black hole mass to be log (MBH) = 7.25 (+/-0.10) for Mrk 335, 7.86 (+0.20, -0.17) for Mrk 1501, 7.84 (+0.14, -0.19) for 3C 120, and 6.92 (+0.24, -0.23) for PG 2130+099. These black hole mass measurements are not based on a particular assumed value of the virial scale factor f, allowing us to compute individual f factors for each target. Our results nearly double the number of targets that have been modeled in this manner, and investigate the properties of a more diverse sample by including previously modeled objects. We measure an average scale factor f in the entire sample to be log10(f) = 0.54 +/- 0.17 when the line dispersion is used to characterize the line width, which is consistent with values derived using the normalization of the MBH-sigma relation. We find that the scale factor f for individual targets is likely correlated with the black hole mass, inclination angle, and opening angle of the broad line region but we do not find any correlation with the luminosity., Comment: 19 pages, 13 Figures. Accepted for publication in ApJ
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.