1. Preparation of Preyssler-type Phosphotungstate with One Central Potassium Cation and Potassium Cation Migration into the Preyssler Molecule to form Di-Potassium-Encapsulated Derivative
- Author
-
Química Física i Inorgànica, Universitat Rovira i Virgili, Hayashi A, Wihadi MNK, Ota H, López X, Ichihashi K, Nishihara S, Inoue K, Tsunoji N, Sano T, Sadakane M, Química Física i Inorgànica, Universitat Rovira i Virgili, and Hayashi A, Wihadi MNK, Ota H, López X, Ichihashi K, Nishihara S, Inoue K, Tsunoji N, Sano T, Sadakane M
- Abstract
A mono-potassium cation-encapsulated Preyssler-type phosphotungstate, [P5W30O110K]14− (1), was prepared as a potassium salt, K14[P5W30O110K] (1a), by heating mono-bismuth- or mono- calcium-encapsulated Preyssler-type phosphotungstates (K12[P5W30O110Bi(H2O)] or K13[P5W30O110Ca(H2O)]) in acetate buffer. Characterization of the potassium salt 1a by single-crystal X-ray structure analysis, 31P and 183W nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectroscopy, and elemental analysis revealed that one potassium cation is encapsulated in the central cavity of the Preyssler-type phosphotungstate molecule with a formal D5h symmetry. Density functional theory calculations have confirmed that the potassium cation prefers the central position of the cavity over a side position, in which no water molecules are coordinated to the encapsulated potassium cation. 31P NMR and cyclic voltammetry analyses revealed the rapid protonation−deprotonation of the oxygens in the cavity compared to that of other Preyssler-type compounds. Heating of 1a in the solid state afforded a di-K+- encapsulated compound, K13[P5W30O110K2] (2a), indicating that a potassium counter-cation is introduced in one of the side cavities, concomitantly displacing the internal potassium ion from the center to a second side cavity, thus providing a new method to encapsulate an additional cation in Preyssler compounds.
- Published
- 2018