Autonomous vehicles have gained much importance over the last decade owing to their promising capabilities like improvement in overall traffic flow, reduction in pollution and elimination of human errors. However, when it comes to long-distance transportation or working in complex isolated environments like mines, various factors such as safety, fuel efficiency, transportation cost, robustness, and accuracy become very critical. This thesis, developed at the Connected and Autonomous Systems department of Scania AB in association with KTH, focuses on addressing the issues related to fuel efficiency, robustness and accuracy of an autonomous heavy-duty truck used for mining applications. First, in order to improve the state prediction capabilities of the simulation model, a comparative analysis of two dynamic bicycle models was performed. The first model used the empirical PAC2002 Magic Formula (MF) tyre model to generate the tyre forces, and the latter used a piece-wise Linear approximation of the former. On top of that, in order to account for the nonlinearities and time delays in the lateral direction, the steering dynamic equations were empirically derived and cascaded to the vehicle model. The fidelity of these models was tested against real experimental logs, and the best vehicle model was selected by striking a balance between accuracy and computational efficiency. The Dynamic bicycle model with piece-wise Linear approximation of tyre forces proved to tick-all-the-boxes by providing accurate state predictions within the acceptable error range and handling lateral accelerations up to 4 m/s2. Also, this model proved to be six times more computationally efficient than the industry-standard PAC2002 tyre model. Furthermore, in order to ensure smooth and accurate driving, several Model Predictive Control (MPC) formulations were tested on clothoid-based Single Lane Change (SLC), Double Lane Change (DLC) and Truncated Slalom trajectories with added disturbances in the i, Under det senaste årtiondet har utveckling av autonoma fordon blivit allt viktigare på grund av de stora möjligheterna till förbättringar av trafikflöden, minskade utsläpp av föroreningar och eliminering av mänskliga fel. När det gäller långdistanstransporter eller komplexa isolerade miljöer så som gruvor blir faktorer som bränsleeffektivitet, transportkostnad, robusthet och noggrannhet mycket viktiga. Detta examensarbete utvecklat vid avdelningen Connected and Autonomous Systems på Scania i samarbete med KTH fokuserar på frågor gällande bränsleeffektivitet, robusthet och exakthet hos en autonom tung lastbil i gruvmiljö. För att förbättra simuleringsmodellens tillståndsprediktioner, genomfördes en jämförande analys av två dynamiska fordonsmodeller. Den första modellen använde den empiriska däckmodellen PAC2002 Magic Formula (MF) för att approximera däckkrafterna, och den andra använde en stegvis linjär approximation av samma däckmodell. För att ta hänsyn till ickelinjäriteter och laterala tidsfördröjningar inkluderades empiriskt identifierade styrdynamiksekvationer i fordonsmodellen. Modellerna verifierades mot verkliga mätdata från fordon. Den bästa fordonsmodellen valdes genom att hitta en balans mellan noggrannhet och beräkningseffektivitet. Den Dynamiska fordonsmodellen med stegvis linjär approximation av däckkrafter visade goda resultat genom att ge noggranna tillståndsprediktioner inom det acceptabla felområdet och hantera sidoacceleration upp till 4 m/s2 . Den här modellen visade sig också vara sex gånger effektivare än PAC2002-däckmodellen. v För att säkerställa mjuk och korrekt körning testades flera MPC varianter på klotoidbaserade trajektorier av filbyte SLC, dubbelt filbyte DLC och slalom. Störningar i position, riktining och hastighet lades till startpositionen. En MPC med straff på rumslig avvikelse föreslås, vilket ger en länk mellan rumsdomän och tidsdomän. Den föreslagna regleringen visade sig vara en perfekt balans mellan bränsleeffektivitet, genom