1. Learning Data Mining with Python Ed. 2
- Author
-
Layton, Robert, Layton, Robert, Layton, Robert, and Layton, Robert
- Abstract
Harness the power of Python to develop data mining applications, analyze data, delve into machine learning, explore object detection using Deep Neural Networks, and create insightful predictive models.About This BookUse a wide variety of Python libraries for practical data mining purposes.Learn how to find, manipulate, analyze, and visualize data using Python.Step-by-step instructions on data mining techniques with Python that have real-world applications.Who This Book Is ForIf you are a Python programmer who wants to get started with data mining, then this book is for you. If you are a data analyst who wants to leverage the power of Python to perform data mining efficiently, this book will also help you. No previous experience with data mining is expected.What You Will LearnApply data mining concepts to real-world problemsPredict the outcome of sports matches based on past resultsDetermine the author of a document based on their writing styleUse APIs to download datasets from social media and other online servicesFind and extract good features from difficult datasetsCreate models that solve real-world problemsDesign and develop data mining applications using a variety of datasetsPerform object detection in images using Deep Neural NetworksFind meaningful insights from your data through intuitive visualizationsCompute on big data, including real-time data from the internetIn DetailThis book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK.You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now.With restructured examples and code samples updated for the latest edition of
- Published
- 2017