13 results on '"Kasukawa T"'
Search Results
2. Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network.
- Author
-
Grapotte, M, Saraswat, M, Bessière, C, Menichelli, C, Ramilowski, JA, Severin, J, Hayashizaki, Y, Itoh, M, Tagami, M, Murata, M, Kojima-Ishiyama, M, Noma, S, Noguchi, S, Kasukawa, T, Hasegawa, A, Suzuki, H, Nishiyori-Sueki, H, Frith, MC, FANTOM consortium, Chatelain, C, Carninci, P, de Hoon, MJL, Wasserman, WW, Bréhélin, L, Lecellier, C-H, Grapotte, M, Saraswat, M, Bessière, C, Menichelli, C, Ramilowski, JA, Severin, J, Hayashizaki, Y, Itoh, M, Tagami, M, Murata, M, Kojima-Ishiyama, M, Noma, S, Noguchi, S, Kasukawa, T, Hasegawa, A, Suzuki, H, Nishiyori-Sueki, H, Frith, MC, FANTOM consortium, Chatelain, C, Carninci, P, de Hoon, MJL, Wasserman, WW, Bréhélin, L, and Lecellier, C-H
- Abstract
Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism.
- Published
- 2021
3. Data Descriptor: FANTOM5 CAGE profiles of human and mouse samples
- Author
-
Noguchi, S, Arakawa, T, Fukuda, S, Furuno, M, Hasegawa, A, Hori, F, Ishikawa-Kato, S, Kaida, K, Kaiho, A, Kanamori-Katayama, M, Kawashima, T, Kojima, M, Kubosaki, A, Manabe, R-I, Murata, M, Nagao-Sato, S, Nakazato, K, Ninomiya, N, Nishiyori-Sueki, H, Noma, S, Saijyo, E, Saka, A, Sakai, M, Simon, C, Suzuki, N, Tagami, M, Watanabe, S, Yoshida, S, Arner, P, Axton, RA, Babina, M, Baillie, JK, Barnett, TC, Beckhouse, AG, Blumenthal, A, Bodega, B, Bonetti, A, Briggs, J, Brombacher, F, Carlisle, AJ, Clevers, HC, Davis, CA, Detmar, M, Dohi, T, Edge, ASB, Edinger, M, Ehrlund, A, Ekwall, K, Endoh, M, Enomoto, H, Eslami, A, Fagiolini, M, Fairbairn, L, Farach-Carson, MC, Faulkner, GJ, Ferrai, C, Fisher, ME, Forrester, LM, Fujita, R, Furusawa, J-I, Geijtenbeek, TB, Gingeras, T, Goldowitz, D, Guhl, S, Guler, R, Gustincich, S, Ha, TJ, Hamaguchi, M, Hara, M, Hasegawa, Y, Herlyn, M, Heutink, P, Hitchens, KJ, Hume, DA, Ikawa, T, Ishizu, Y, Kai, C, Kawamoto, H, Kawamura, YI, Kempfle, JS, Kenna, TJ, Kere, J, Khachigian, LM, Kitamura, T, Klein, S, Klinken, SP, Knox, AJ, Kojima, S, Koseki, H, Koyasu, S, Lee, W, Lennartsson, A, Mackay-sim, A, Mejhert, N, Mizuno, Y, Morikawa, H, Morimoto, M, Moro, K, Morris, KJ, Motohashi, H, Mummery, CL, Nakachi, Y, Nakahara, F, Nakamura, T, Nakamura, Y, Nozaki, T, Ogishima, S, Ohkura, N, Ohno, H, Ohshima, M, Okada-Hatakeyama, M, Okazaki, Y, Orlando, V, Ovchinnikov, DA, Passier, R, Patrikakis, M, Pombo, A, Pradhan-Bhatt, S, Qin, X-Y, Rehli, M, Rizzu, P, Roy, S, Sajantila, A, Sakaguchi, S, Sato, H, Satoh, H, Savvi, S, Saxena, A, Schmidl, C, Schneider, C, Schulze-Tanzil, GG, Schwegmann, A, Sheng, G, Shin, JW, Sugiyama, D, Sugiyama, T, Summers, KM, Takahashi, N, Takai, J, Tanaka, H, Tatsukawa, H, Tomoiu, A, Toyoda, H, van de Wetering, M, van den Berg, LM, Verardo, R, Vijayan, D, Wells, CA, Winteringham, LN, Wolvetang, E, Yamaguchi, Y, Yamamoto, M, Yanagi-Mizuochi, C, Yoneda, M, Yonekura, Y, Zhang, PG, Zucchelli, S, Abugessaisa, I, Arner, E, Harshbarger, J, Kondo, A, Lassmann, T, Lizio, M, Sahin, S, Sengstag, T, Severin, J, Shimoji, H, Suzuki, M, Suzuki, H, Kawai, J, Kondo, N, Itoh, M, Daub, CO, Kasukawa, T, Kawaji, H, Carninci, P, Forrest, ARR, Hayashizaki, Y, Noguchi, S, Arakawa, T, Fukuda, S, Furuno, M, Hasegawa, A, Hori, F, Ishikawa-Kato, S, Kaida, K, Kaiho, A, Kanamori-Katayama, M, Kawashima, T, Kojima, M, Kubosaki, A, Manabe, R-I, Murata, M, Nagao-Sato, S, Nakazato, K, Ninomiya, N, Nishiyori-Sueki, H, Noma, S, Saijyo, E, Saka, A, Sakai, M, Simon, C, Suzuki, N, Tagami, M, Watanabe, S, Yoshida, S, Arner, P, Axton, RA, Babina, M, Baillie, JK, Barnett, TC, Beckhouse, AG, Blumenthal, A, Bodega, B, Bonetti, A, Briggs, J, Brombacher, F, Carlisle, AJ, Clevers, HC, Davis, CA, Detmar, M, Dohi, T, Edge, ASB, Edinger, M, Ehrlund, A, Ekwall, K, Endoh, M, Enomoto, H, Eslami, A, Fagiolini, M, Fairbairn, L, Farach-Carson, MC, Faulkner, GJ, Ferrai, C, Fisher, ME, Forrester, LM, Fujita, R, Furusawa, J-I, Geijtenbeek, TB, Gingeras, T, Goldowitz, D, Guhl, S, Guler, R, Gustincich, S, Ha, TJ, Hamaguchi, M, Hara, M, Hasegawa, Y, Herlyn, M, Heutink, P, Hitchens, KJ, Hume, DA, Ikawa, T, Ishizu, Y, Kai, C, Kawamoto, H, Kawamura, YI, Kempfle, JS, Kenna, TJ, Kere, J, Khachigian, LM, Kitamura, T, Klein, S, Klinken, SP, Knox, AJ, Kojima, S, Koseki, H, Koyasu, S, Lee, W, Lennartsson, A, Mackay-sim, A, Mejhert, N, Mizuno, Y, Morikawa, H, Morimoto, M, Moro, K, Morris, KJ, Motohashi, H, Mummery, CL, Nakachi, Y, Nakahara, F, Nakamura, T, Nakamura, Y, Nozaki, T, Ogishima, S, Ohkura, N, Ohno, H, Ohshima, M, Okada-Hatakeyama, M, Okazaki, Y, Orlando, V, Ovchinnikov, DA, Passier, R, Patrikakis, M, Pombo, A, Pradhan-Bhatt, S, Qin, X-Y, Rehli, M, Rizzu, P, Roy, S, Sajantila, A, Sakaguchi, S, Sato, H, Satoh, H, Savvi, S, Saxena, A, Schmidl, C, Schneider, C, Schulze-Tanzil, GG, Schwegmann, A, Sheng, G, Shin, JW, Sugiyama, D, Sugiyama, T, Summers, KM, Takahashi, N, Takai, J, Tanaka, H, Tatsukawa, H, Tomoiu, A, Toyoda, H, van de Wetering, M, van den Berg, LM, Verardo, R, Vijayan, D, Wells, CA, Winteringham, LN, Wolvetang, E, Yamaguchi, Y, Yamamoto, M, Yanagi-Mizuochi, C, Yoneda, M, Yonekura, Y, Zhang, PG, Zucchelli, S, Abugessaisa, I, Arner, E, Harshbarger, J, Kondo, A, Lassmann, T, Lizio, M, Sahin, S, Sengstag, T, Severin, J, Shimoji, H, Suzuki, M, Suzuki, H, Kawai, J, Kondo, N, Itoh, M, Daub, CO, Kasukawa, T, Kawaji, H, Carninci, P, Forrest, ARR, and Hayashizaki, Y
- Abstract
In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
- Published
- 2017
4. Alternate transcription of the Toll-like receptor signaling cascade
- Author
-
Wells, CA, Chalk, AM, Forrest, A, Taylor, D, Waddell, N, Schroder, K, Himes, SR, Faulkner, G, Lo, S, Kasukawa, T, Kawaji, H, Kai, C, Kawai, J, Katayama, S, Carninci, P, Hayashizaki, Y, Hume, DA, Grimmond, SM, Wells, CA, Chalk, AM, Forrest, A, Taylor, D, Waddell, N, Schroder, K, Himes, SR, Faulkner, G, Lo, S, Kasukawa, T, Kawaji, H, Kai, C, Kawai, J, Katayama, S, Carninci, P, Hayashizaki, Y, Hume, DA, and Grimmond, SM
- Abstract
BACKGROUND: Alternate splicing of key signaling molecules in the Toll-like receptor (Tlr) cascade has been shown to dramatically alter the signaling capacity of inflammatory cells, but it is not known how common this mechanism is. We provide transcriptional evidence of widespread alternate splicing in the Toll-like receptor signaling pathway, derived from a systematic analysis of the FANTOM3 mouse data set. Functional annotation of variant proteins was assessed in light of inflammatory signaling in mouse primary macrophages, and the expression of each variant transcript was assessed by splicing arrays. RESULTS: A total of 256 variant transcripts were identified, including novel variants of Tlr4, Ticam1, Tollip, Rac1, Irak1, 2 and 4, Mapk14/p38, Atf2 and Stat1. The expression of variant transcripts was assessed using custom-designed splicing arrays. We functionally tested the expression of Tlr4 transcripts under a range of cytokine conditions via northern and quantitative real-time polymerase chain reaction. The effects of variant Mapk14/p38 protein expression on macrophage survival were demonstrated. CONCLUSION: Members of the Toll-like receptor signaling pathway are highly alternatively spliced, producing a large number of novel proteins with the potential to functionally alter inflammatory outcomes. These variants are expressed in primary mouse macrophages in response to inflammatory mediators such as interferon-gamma and lipopolysaccharide. Our data suggest a surprisingly common role for variant proteins in diversification/repression of inflammatory signaling.
- Published
- 2006
5. Differential use of signal peptides and membrane domains is a common occurrence in the protein output of transcriptional units
- Author
-
Blake, J, Hancock, J, Pavan, B, Stubbs, L, Davis, MJ, Hanson, KA, Clark, F, Fink, JL, Zhang, F, Kasukawa, T, Kai, C, Kawai, J, Carninci, P, Hayashizaki, Y, Teasdale, RD, Blake, J, Hancock, J, Pavan, B, Stubbs, L, Davis, MJ, Hanson, KA, Clark, F, Fink, JL, Zhang, F, Kasukawa, T, Kai, C, Kawai, J, Carninci, P, Hayashizaki, Y, and Teasdale, RD
- Abstract
Membrane organization describes the orientation of a protein with respect to the membrane and can be determined by the presence, or absence, and organization within the protein sequence of two features: endoplasmic reticulum signal peptides and alpha-helical transmembrane domains. These features allow protein sequences to be classified into one of five membrane organization categories: soluble intracellular proteins, soluble secreted proteins, type I membrane proteins, type II membrane proteins, and multi-spanning membrane proteins. Generation of protein isoforms with variable membrane organizations can change a protein's subcellular localization or association with the membrane. Application of MemO, a membrane organization annotation pipeline, to the FANTOM3 Isoform Protein Sequence mouse protein set revealed that within the 8,032 transcriptional units (TUs) with multiple protein isoforms, 573 had variation in their use of signal peptides, 1,527 had variation in their use of transmembrane domains, and 615 generated protein isoforms from distinct membrane organization classes. The mechanisms underlying these transcript variations were analyzed. While TUs were identified encoding all pairwise combinations of membrane organization categories, the most common was conversion of membrane proteins to soluble proteins. Observed within our high-confidence set were 156 TUs predicted to generate both extracellular soluble and membrane proteins, and 217 TUs generating both intracellular soluble and membrane proteins. The differential use of endoplasmic reticulum signal peptides and transmembrane domains is a common occurrence within the variable protein output of TUs. The generation of protein isoforms that are targeted to multiple subcellular locations represents a major functional consequence of transcript variation within the mouse transcriptome.
- Published
- 2006
6. Transcript annotation in FANTOM3:: Mouse gene catalog based on physical cDNAs
- Author
-
Maeda, N, Kasukawa, T, Oyama, R, Gough, J, Frith, M, Engstrom, PG, Lenhard, B, Aturaliya, RN, Batalov, S, Beisel, KW, Bult, CJ, Fletcher, CF, Forrest, ARR, Furuno, M, Hill, D, Itoh, M, Kanamori-Katayama, M, Katayama, S, Katoh, M, Kawashima, T, Quackenbush, J, Ravasi, T, Ring, BZ, Shibata, K, Sugiura, K, Takenaka, Y, Teasdale, RD, Wells, CA, Zhu, Y, Kai, C, Kawai, J, Hume, DA, Carninci, P, Hayashizaki, Y, Maeda, N, Kasukawa, T, Oyama, R, Gough, J, Frith, M, Engstrom, PG, Lenhard, B, Aturaliya, RN, Batalov, S, Beisel, KW, Bult, CJ, Fletcher, CF, Forrest, ARR, Furuno, M, Hill, D, Itoh, M, Kanamori-Katayama, M, Katayama, S, Katoh, M, Kawashima, T, Quackenbush, J, Ravasi, T, Ring, BZ, Shibata, K, Sugiura, K, Takenaka, Y, Teasdale, RD, Wells, CA, Zhu, Y, Kai, C, Kawai, J, Hume, DA, Carninci, P, and Hayashizaki, Y
- Abstract
The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species.
- Published
- 2006
7. Integrative annotation of 21,037 human genes validated by full-length cDNA clones
- Author
-
Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., Koyanagi, K. O., Barrero, R. A., Tamura, T., Yamaguchi-Kabata, Y., Tanino, M., Yura, K., Miyazaki, S., Ikeo, K., Homma, K., Kasprzyk, A., Nishikawa, T., Hirakawa, M., Thierry-Mieg, J., Thierry-Mieg, D., Ashurst, J., Jia, L., Nakao, M., Thomas, M. A., Mulder, N., Karavidopoulou, Y., Jin, L., Kim, S., Yasuda, T., Lenhard, B., Eveno, E., Yamasaki, C., Takeda, J. -I, Gough, C., Hilton, P., Fujii, Y., Sakai, H., Tanaka, S., Amid, C., Bellgard, M., de Fatima Bonaldo, M., Bono, H., Bromberg, S. K., Brookes, A. J., Bruford, E., Carninci, P., Chelala, C., Couillault, C., de Souza, S. J., Debily, M. -A, Devignes, M. -D, Dubchak, I., Endo, T., Estreicher, A., Eyras, E., Fukami-Kobayashi, K., Gopinath, G. R., Graudens, E., Hahn, Y., Han, M., Han, Z. -G, Hanada, K., Hanaoka, H., Harada, E., Hashimoto, K., Hinz, U., Hirai, M., Hishiki, T., Hopkinson, I., Imbeaud, S., Inoko, H., Kanapin, A., Kaneko, Y., Kasukawa, T., Kelso, J., Kersey, P., Kikuno, R., Kimura, K., Korn, B., Kuryshev, V., Makalowska, I., Makino, T., Mano, S., Mariage-Samson, R., Mashima, J., Matsuda, H., Mewes, H. -W, Minoshima, S., Nagai, K., Nagasaki, H., Nagata, N., Nigam, R., Ogasawara, O., Ohara, O., Ohtsubo, M., Okada, N., Okido, T., Oota, S., Ota, M., Ota, T., Otsuki, T., Piatier-Tonneau, D., Poustka, A., Ren, S. -X, Saitou, N., Sakai, K., Sakamoto, S., Sakate, R., Schupp, I., Servant, F., Sherry, S., Shiba, R., Shimizu, N., Shimoyama, M., Simpson, A. J., Soares, B., Steward, C., Suwa, M., Suzuki, M., Takahashi, A., Tamiya, G., Tanaka, H., Taylor, T., Terwilliger, J. D., Unneberg, Per, Veeramachaneni, V., Watanabe, S., Wilming, L., Yasuda, N., Hyang-Yoo, S., Stodolsky, M., Makalowski, W., Go, M., Nakai, K., Takagi, T., Kanehisa, M., Sakaki, Y., Quackenbush, J., Okazaki, Y., Hayashizaki, Y., Hide, W., Chakraborty, R., Nishikawa, K., Sugawara, H., Tateno, Y., Chen, Z., Oishi, M., Tonellato, P., Apweiler, R., Okubo, K., Wagner, L., Wiemann, S., Strausberg, R. L., Isogai, T., Auffray, C., Nomura, N., Gojobori, T., Sugano, S., Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., Koyanagi, K. O., Barrero, R. A., Tamura, T., Yamaguchi-Kabata, Y., Tanino, M., Yura, K., Miyazaki, S., Ikeo, K., Homma, K., Kasprzyk, A., Nishikawa, T., Hirakawa, M., Thierry-Mieg, J., Thierry-Mieg, D., Ashurst, J., Jia, L., Nakao, M., Thomas, M. A., Mulder, N., Karavidopoulou, Y., Jin, L., Kim, S., Yasuda, T., Lenhard, B., Eveno, E., Yamasaki, C., Takeda, J. -I, Gough, C., Hilton, P., Fujii, Y., Sakai, H., Tanaka, S., Amid, C., Bellgard, M., de Fatima Bonaldo, M., Bono, H., Bromberg, S. K., Brookes, A. J., Bruford, E., Carninci, P., Chelala, C., Couillault, C., de Souza, S. J., Debily, M. -A, Devignes, M. -D, Dubchak, I., Endo, T., Estreicher, A., Eyras, E., Fukami-Kobayashi, K., Gopinath, G. R., Graudens, E., Hahn, Y., Han, M., Han, Z. -G, Hanada, K., Hanaoka, H., Harada, E., Hashimoto, K., Hinz, U., Hirai, M., Hishiki, T., Hopkinson, I., Imbeaud, S., Inoko, H., Kanapin, A., Kaneko, Y., Kasukawa, T., Kelso, J., Kersey, P., Kikuno, R., Kimura, K., Korn, B., Kuryshev, V., Makalowska, I., Makino, T., Mano, S., Mariage-Samson, R., Mashima, J., Matsuda, H., Mewes, H. -W, Minoshima, S., Nagai, K., Nagasaki, H., Nagata, N., Nigam, R., Ogasawara, O., Ohara, O., Ohtsubo, M., Okada, N., Okido, T., Oota, S., Ota, M., Ota, T., Otsuki, T., Piatier-Tonneau, D., Poustka, A., Ren, S. -X, Saitou, N., Sakai, K., Sakamoto, S., Sakate, R., Schupp, I., Servant, F., Sherry, S., Shiba, R., Shimizu, N., Shimoyama, M., Simpson, A. J., Soares, B., Steward, C., Suwa, M., Suzuki, M., Takahashi, A., Tamiya, G., Tanaka, H., Taylor, T., Terwilliger, J. D., Unneberg, Per, Veeramachaneni, V., Watanabe, S., Wilming, L., Yasuda, N., Hyang-Yoo, S., Stodolsky, M., Makalowski, W., Go, M., Nakai, K., Takagi, T., Kanehisa, M., Sakaki, Y., Quackenbush, J., Okazaki, Y., Hayashizaki, Y., Hide, W., Chakraborty, R., Nishikawa, K., Sugawara, H., Tateno, Y., Chen, Z., Oishi, M., Tonellato, P., Apweiler, R., Okubo, K., Wagner, L., Wiemann, S., Strausberg, R. L., Isogai, T., Auffray, C., Nomura, N., Gojobori, T., and Sugano, S.
- Abstract
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, QC 20141211
- Published
- 2004
- Full Text
- View/download PDF
8. Integrative annotation of 21,037 human genes validated by full-length cDNA clones
- Author
-
Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., Koyanagi, K.O., Barrero, R.A., Tamura, T., Yamaguchi-Kabata, Y., Tanino, M., Yura, K., Miyazaki, S., Ikeo, K., Homma, K., Kasprzyk, A., Nishikawa, T., Hirakawa, M., Thierry-Mieg, J., Thierry-Mieg, D., Ashurst, J., Jia, L., Nakao, M., Thomas, M.A., Mulder, N., Karavidopoulou, Y., Jin, L., Kim, S., Yasuda, T., Lenhard, B., Eveno, E., Yamasaki, C., Takeda, J-I, Gough, C., Hilton, P., Fujii, Y., Sakai, H., Tanaka, S., Amid, Clara, Bellgard, M., Bonaldo, M., Bono, H., Bromberg, S.K., Brookes, A.J., Bruford, E., Carninci, P., Chelala, C., Couillault, C., Souza, S., Debily, M., Devignes, M., Dubchak, I., Endo, T., Estreicher, A., Eyras, E., Fukami-Kobayashi, K., R. Gopinath, G., Graudens, E., Hahn, Y., Han, M., Han, Z-G., Hanada, K., Hanaoka, H., Harada, E., Hashimoto, K., Hinz, U., Hirai, M., Hishiki, T., Hopkinson, I., Imbeaud, S., Inoko, H., Kanapin, A., Kaneko, Y., Kasukawa, T., Kelso, J., Kersey, P., Kikuno, R., Kimura, K., Korn, B., Kuryshev, V., Makalowska, I., Makino, T., Mano, S., Mariage-Samson, R., Mashima, J., Matsuda, H., Mewes, H-W, Minoshima, S., Nagai, K., Nagasaki, H., Nagata, N., Nigam, R., Ogasawara, O., Ohara, O., Ohtsubo, M., Okada, N., Okido, T., Oota, S., Ota, M., Ota, T., Otsuki, T., Piatier-Tonneau, D., Poustka, A., Ren, S-X, Saitou, N., Sakai, K., Sakamoto, S., Sakate, R., Schupp, I., Servant, F., Sherry, S., Shiba, R., Shimizu, N., Shimoyama, M., Simpson, A.J., Soares, B., Steward, C., Suwa, M., Suzuki, M., Takahashi, A., Tamiya, G., Tanaka, H., Taylor, T., Terwilliger, J.D., Unneberg, P., Veeramachaneni, V., Watanabe, S., Wilming, L., Yasuda, N., Yoo, H-S, Stodolsky, M., Makalowski, W., Go, M., Nakai, K., Takagi, T., Kanehisa, M., Sakaki, Y., Quackenbush, J., Okazaki, Y., Hayashizaki, Y., Hide, W., Chakraborty, R., Nishikawa, K., Sugawara, H., Tateno, Y., Chen, Z., Oishi, M., Tonellato, P., Apweiler, R., Okubo, K., Wagner, L., Wiemann, S., Strausberg, R.L., Isogai, T., Auffray, C., Nomura, N., Gojobori, T., Sugano, S., Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., Koyanagi, K.O., Barrero, R.A., Tamura, T., Yamaguchi-Kabata, Y., Tanino, M., Yura, K., Miyazaki, S., Ikeo, K., Homma, K., Kasprzyk, A., Nishikawa, T., Hirakawa, M., Thierry-Mieg, J., Thierry-Mieg, D., Ashurst, J., Jia, L., Nakao, M., Thomas, M.A., Mulder, N., Karavidopoulou, Y., Jin, L., Kim, S., Yasuda, T., Lenhard, B., Eveno, E., Yamasaki, C., Takeda, J-I, Gough, C., Hilton, P., Fujii, Y., Sakai, H., Tanaka, S., Amid, Clara, Bellgard, M., Bonaldo, M., Bono, H., Bromberg, S.K., Brookes, A.J., Bruford, E., Carninci, P., Chelala, C., Couillault, C., Souza, S., Debily, M., Devignes, M., Dubchak, I., Endo, T., Estreicher, A., Eyras, E., Fukami-Kobayashi, K., R. Gopinath, G., Graudens, E., Hahn, Y., Han, M., Han, Z-G., Hanada, K., Hanaoka, H., Harada, E., Hashimoto, K., Hinz, U., Hirai, M., Hishiki, T., Hopkinson, I., Imbeaud, S., Inoko, H., Kanapin, A., Kaneko, Y., Kasukawa, T., Kelso, J., Kersey, P., Kikuno, R., Kimura, K., Korn, B., Kuryshev, V., Makalowska, I., Makino, T., Mano, S., Mariage-Samson, R., Mashima, J., Matsuda, H., Mewes, H-W, Minoshima, S., Nagai, K., Nagasaki, H., Nagata, N., Nigam, R., Ogasawara, O., Ohara, O., Ohtsubo, M., Okada, N., Okido, T., Oota, S., Ota, M., Ota, T., Otsuki, T., Piatier-Tonneau, D., Poustka, A., Ren, S-X, Saitou, N., Sakai, K., Sakamoto, S., Sakate, R., Schupp, I., Servant, F., Sherry, S., Shiba, R., Shimizu, N., Shimoyama, M., Simpson, A.J., Soares, B., Steward, C., Suwa, M., Suzuki, M., Takahashi, A., Tamiya, G., Tanaka, H., Taylor, T., Terwilliger, J.D., Unneberg, P., Veeramachaneni, V., Watanabe, S., Wilming, L., Yasuda, N., Yoo, H-S, Stodolsky, M., Makalowski, W., Go, M., Nakai, K., Takagi, T., Kanehisa, M., Sakaki, Y., Quackenbush, J., Okazaki, Y., Hayashizaki, Y., Hide, W., Chakraborty, R., Nishikawa, K., Sugawara, H., Tateno, Y., Chen, Z., Oishi, M., Tonellato, P., Apweiler, R., Okubo, K., Wagner, L., Wiemann, S., Strausberg, R.L., Isogai, T., Auffray, C., Nomura, N., Gojobori, T., and Sugano, S.
- Abstract
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition
- Published
- 2004
9. Integrative annotation of 21,037 human genes validated by full-length cDNA clones
- Author
-
Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., Koyanagi, K.O., Barrero, R.A., Tamura, T., Yamaguchi-Kabata, Y., Tanino, M., Yura, K., Miyazaki, S., Ikeo, K., Homma, K., Kasprzyk, A., Nishikawa, T., Hirakawa, M., Thierry-Mieg, J., Thierry-Mieg, D., Ashurst, J., Jia, L., Nakao, M., Thomas, M.A., Mulder, N., Karavidopoulou, Y., Jin, L., Kim, S., Yasuda, T., Lenhard, B., Eveno, E., Yamasaki, C., Takeda, J-I, Gough, C., Hilton, P., Fujii, Y., Sakai, H., Tanaka, S., Amid, Clara, Bellgard, M., Bonaldo, M., Bono, H., Bromberg, S.K., Brookes, A.J., Bruford, E., Carninci, P., Chelala, C., Couillault, C., Souza, S., Debily, M., Devignes, M., Dubchak, I., Endo, T., Estreicher, A., Eyras, E., Fukami-Kobayashi, K., R. Gopinath, G., Graudens, E., Hahn, Y., Han, M., Han, Z-G., Hanada, K., Hanaoka, H., Harada, E., Hashimoto, K., Hinz, U., Hirai, M., Hishiki, T., Hopkinson, I., Imbeaud, S., Inoko, H., Kanapin, A., Kaneko, Y., Kasukawa, T., Kelso, J., Kersey, P., Kikuno, R., Kimura, K., Korn, B., Kuryshev, V., Makalowska, I., Makino, T., Mano, S., Mariage-Samson, R., Mashima, J., Matsuda, H., Mewes, H-W, Minoshima, S., Nagai, K., Nagasaki, H., Nagata, N., Nigam, R., Ogasawara, O., Ohara, O., Ohtsubo, M., Okada, N., Okido, T., Oota, S., Ota, M., Ota, T., Otsuki, T., Piatier-Tonneau, D., Poustka, A., Ren, S-X, Saitou, N., Sakai, K., Sakamoto, S., Sakate, R., Schupp, I., Servant, F., Sherry, S., Shiba, R., Shimizu, N., Shimoyama, M., Simpson, A.J., Soares, B., Steward, C., Suwa, M., Suzuki, M., Takahashi, A., Tamiya, G., Tanaka, H., Taylor, T., Terwilliger, J.D., Unneberg, P., Veeramachaneni, V., Watanabe, S., Wilming, L., Yasuda, N., Yoo, H-S, Stodolsky, M., Makalowski, W., Go, M., Nakai, K., Takagi, T., Kanehisa, M., Sakaki, Y., Quackenbush, J., Okazaki, Y., Hayashizaki, Y., Hide, W., Chakraborty, R., Nishikawa, K., Sugawara, H., Tateno, Y., Chen, Z., Oishi, M., Tonellato, P., Apweiler, R., Okubo, K., Wagner, L., Wiemann, S., Strausberg, R.L., Isogai, T., Auffray, C., Nomura, N., Gojobori, T., Sugano, S., Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., Koyanagi, K.O., Barrero, R.A., Tamura, T., Yamaguchi-Kabata, Y., Tanino, M., Yura, K., Miyazaki, S., Ikeo, K., Homma, K., Kasprzyk, A., Nishikawa, T., Hirakawa, M., Thierry-Mieg, J., Thierry-Mieg, D., Ashurst, J., Jia, L., Nakao, M., Thomas, M.A., Mulder, N., Karavidopoulou, Y., Jin, L., Kim, S., Yasuda, T., Lenhard, B., Eveno, E., Yamasaki, C., Takeda, J-I, Gough, C., Hilton, P., Fujii, Y., Sakai, H., Tanaka, S., Amid, Clara, Bellgard, M., Bonaldo, M., Bono, H., Bromberg, S.K., Brookes, A.J., Bruford, E., Carninci, P., Chelala, C., Couillault, C., Souza, S., Debily, M., Devignes, M., Dubchak, I., Endo, T., Estreicher, A., Eyras, E., Fukami-Kobayashi, K., R. Gopinath, G., Graudens, E., Hahn, Y., Han, M., Han, Z-G., Hanada, K., Hanaoka, H., Harada, E., Hashimoto, K., Hinz, U., Hirai, M., Hishiki, T., Hopkinson, I., Imbeaud, S., Inoko, H., Kanapin, A., Kaneko, Y., Kasukawa, T., Kelso, J., Kersey, P., Kikuno, R., Kimura, K., Korn, B., Kuryshev, V., Makalowska, I., Makino, T., Mano, S., Mariage-Samson, R., Mashima, J., Matsuda, H., Mewes, H-W, Minoshima, S., Nagai, K., Nagasaki, H., Nagata, N., Nigam, R., Ogasawara, O., Ohara, O., Ohtsubo, M., Okada, N., Okido, T., Oota, S., Ota, M., Ota, T., Otsuki, T., Piatier-Tonneau, D., Poustka, A., Ren, S-X, Saitou, N., Sakai, K., Sakamoto, S., Sakate, R., Schupp, I., Servant, F., Sherry, S., Shiba, R., Shimizu, N., Shimoyama, M., Simpson, A.J., Soares, B., Steward, C., Suwa, M., Suzuki, M., Takahashi, A., Tamiya, G., Tanaka, H., Taylor, T., Terwilliger, J.D., Unneberg, P., Veeramachaneni, V., Watanabe, S., Wilming, L., Yasuda, N., Yoo, H-S, Stodolsky, M., Makalowski, W., Go, M., Nakai, K., Takagi, T., Kanehisa, M., Sakaki, Y., Quackenbush, J., Okazaki, Y., Hayashizaki, Y., Hide, W., Chakraborty, R., Nishikawa, K., Sugawara, H., Tateno, Y., Chen, Z., Oishi, M., Tonellato, P., Apweiler, R., Okubo, K., Wagner, L., Wiemann, S., Strausberg, R.L., Isogai, T., Auffray, C., Nomura, N., Gojobori, T., and Sugano, S.
- Abstract
The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition
- Published
- 2004
10. Systematic analysis of transcription start sites in avian development
- Author
-
Lizio M., Deviatiiarov R., Nagai H., Galan L., Arner E., Itoh M., Lassmann T., Kasukawa T., Hasegawa A., Ros M., Hayashizaki Y., Carninci P., Forrest A., Kawaji H., Gusev O., Sheng G., Lizio M., Deviatiiarov R., Nagai H., Galan L., Arner E., Itoh M., Lassmann T., Kasukawa T., Hasegawa A., Ros M., Hayashizaki Y., Carninci P., Forrest A., Kawaji H., Gusev O., and Sheng G.
- Abstract
© 2017 Lizio et al. Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks ( > 1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic m
11. An integrated expression atlas of miRNAs and their promoters in human and mouse
- Author
-
De Rie D., Abugessaisa I., Alam T., Arner E., Arner P., Ashoor H., Åström G., Babina M., Bertin N., Burroughs A., Carlisle A., Daub C., Detmar M., Deviatiiarov R., Fort A., Gebhard C., Goldowitz D., Guhl S., Ha T., Harshbarger J., Hasegawa A., Hashimoto K., Herlyn M., Heutink P., Hitchens K., Hon C., Huang E., Ishizu Y., Kai C., Kasukawa T., Klinken P., Lassmann T., Lecellier C., Lee W., Lizio M., Makeev V., Mathelier A., Medvedeva Y., Mejhert N., Mungall C., Noma S., Ohshima M., Okada-Hatakeyama M., Persson H., Rizzu P., Roudnicky F., Sætrom P., Sato H., Severin J., Shin J., Swoboda R., Tarui H., Toyoda H., Vitting-Seerup K., Winteringham L., Yamaguchi Y., Yasuzawa K., Yoneda M., Yumoto N., Zabierowski S., Zhang P., Wells C., Summers K., Kawaji H., Sandelin A., Rehli M., Hayashizaki Y., De Rie D., Abugessaisa I., Alam T., Arner E., Arner P., Ashoor H., Åström G., Babina M., Bertin N., Burroughs A., Carlisle A., Daub C., Detmar M., Deviatiiarov R., Fort A., Gebhard C., Goldowitz D., Guhl S., Ha T., Harshbarger J., Hasegawa A., Hashimoto K., Herlyn M., Heutink P., Hitchens K., Hon C., Huang E., Ishizu Y., Kai C., Kasukawa T., Klinken P., Lassmann T., Lecellier C., Lee W., Lizio M., Makeev V., Mathelier A., Medvedeva Y., Mejhert N., Mungall C., Noma S., Ohshima M., Okada-Hatakeyama M., Persson H., Rizzu P., Roudnicky F., Sætrom P., Sato H., Severin J., Shin J., Swoboda R., Tarui H., Toyoda H., Vitting-Seerup K., Winteringham L., Yamaguchi Y., Yasuzawa K., Yoneda M., Yumoto N., Zabierowski S., Zhang P., Wells C., Summers K., Kawaji H., Sandelin A., Rehli M., and Hayashizaki Y.
- Abstract
© 2017 Nature America, Inc., part of Springer Nature. MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.
12. Systematic analysis of transcription start sites in avian development
- Author
-
Lizio M., Deviatiiarov R., Nagai H., Galan L., Arner E., Itoh M., Lassmann T., Kasukawa T., Hasegawa A., Ros M., Hayashizaki Y., Carninci P., Forrest A., Kawaji H., Gusev O., Sheng G., Lizio M., Deviatiiarov R., Nagai H., Galan L., Arner E., Itoh M., Lassmann T., Kasukawa T., Hasegawa A., Ros M., Hayashizaki Y., Carninci P., Forrest A., Kawaji H., Gusev O., and Sheng G.
- Abstract
© 2017 Lizio et al. Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks ( > 1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic m
13. An integrated expression atlas of miRNAs and their promoters in human and mouse
- Author
-
De Rie D., Abugessaisa I., Alam T., Arner E., Arner P., Ashoor H., Åström G., Babina M., Bertin N., Burroughs A., Carlisle A., Daub C., Detmar M., Deviatiiarov R., Fort A., Gebhard C., Goldowitz D., Guhl S., Ha T., Harshbarger J., Hasegawa A., Hashimoto K., Herlyn M., Heutink P., Hitchens K., Hon C., Huang E., Ishizu Y., Kai C., Kasukawa T., Klinken P., Lassmann T., Lecellier C., Lee W., Lizio M., Makeev V., Mathelier A., Medvedeva Y., Mejhert N., Mungall C., Noma S., Ohshima M., Okada-Hatakeyama M., Persson H., Rizzu P., Roudnicky F., Sætrom P., Sato H., Severin J., Shin J., Swoboda R., Tarui H., Toyoda H., Vitting-Seerup K., Winteringham L., Yamaguchi Y., Yasuzawa K., Yoneda M., Yumoto N., Zabierowski S., Zhang P., Wells C., Summers K., Kawaji H., Sandelin A., Rehli M., Hayashizaki Y., De Rie D., Abugessaisa I., Alam T., Arner E., Arner P., Ashoor H., Åström G., Babina M., Bertin N., Burroughs A., Carlisle A., Daub C., Detmar M., Deviatiiarov R., Fort A., Gebhard C., Goldowitz D., Guhl S., Ha T., Harshbarger J., Hasegawa A., Hashimoto K., Herlyn M., Heutink P., Hitchens K., Hon C., Huang E., Ishizu Y., Kai C., Kasukawa T., Klinken P., Lassmann T., Lecellier C., Lee W., Lizio M., Makeev V., Mathelier A., Medvedeva Y., Mejhert N., Mungall C., Noma S., Ohshima M., Okada-Hatakeyama M., Persson H., Rizzu P., Roudnicky F., Sætrom P., Sato H., Severin J., Shin J., Swoboda R., Tarui H., Toyoda H., Vitting-Seerup K., Winteringham L., Yamaguchi Y., Yasuzawa K., Yoneda M., Yumoto N., Zabierowski S., Zhang P., Wells C., Summers K., Kawaji H., Sandelin A., Rehli M., and Hayashizaki Y.
- Abstract
© 2017 Nature America, Inc., part of Springer Nature. MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.