6 results on '"Hennessy, Matthew G."'
Search Results
2. A mathematical model of carbon capture by adsorption
- Author
-
Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids, Universitat Politècnica de Catalunya. GReCEF- Grup de Recerca en Ciència i Enginyeria de Fluids, Font Martínez, Francesc, Myers, Timothy, Hennessy, Matthew G., Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids, Universitat Politècnica de Catalunya. GReCEF- Grup de Recerca en Ciència i Enginyeria de Fluids, Font Martínez, Francesc, Myers, Timothy, and Hennessy, Matthew G.
- Abstract
We present a model to describe the capture of carbon by an adsorbing porous material occupying a circular cross-section column. The model consists of an advection-reaction-diffusion equation for the gas concentration coupled to a simple kinetic equation describing gas adsorption on the pores. It is applicable to isothermal and isobaric gas transport with adsorption. The equations are defined in a domain with a free boundary. We obtain asymptotic solutions for large and small times and find good agreement with the numerical simulations. Our solutions show qualitative agreement with an experiment of carbon capture by adsorption in the literature, Peer Reviewed, Postprint (published version)
- Published
- 2021
3. Host–virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos
- Author
-
Fundación la Caixa, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Generalitat Valenciana, Generalitat de Catalunya, Elena, Santiago F. [0000-0001-8249-5593], Sardanyés, Josep [0000-0001-7225-5158], Nurtay, Anel, Hennessy, Matthew G., Alsedà, Lluís, Elena, Santiago F., Sardanyés, Josep, Fundación la Caixa, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Generalitat Valenciana, Generalitat de Catalunya, Elena, Santiago F. [0000-0001-8249-5593], Sardanyés, Josep [0000-0001-7225-5158], Nurtay, Anel, Hennessy, Matthew G., Alsedà, Lluís, Elena, Santiago F., and Sardanyés, Josep
- Abstract
In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed points and stable periodic orbits, as well as regions of bistability. For arbitrary biologically feasible initial population sizes, the probability of evolving toward stable solutions is obtained for each point of the analyzed parameter space. This probability map shows combinations of infection rates of the generalist and specialist strains that might lead to equal chances for each type becoming the dominant strategy. Furthermore, we have identified infection rates for which the model predicts the onset of chaotic dynamics. Several degenerate Bogdanov–Takens and zero-Hopf bifurcations are detected along with generalized Hopf and zero-Hopf bifurcations. This manuscript provides additional insights into the dynamical complexity of host–pathogen evolution toward different infection strategies.
- Published
- 2020
4. Mathematical modelling of carbon capture in a packed column by adsorption
- Author
-
Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids, Universitat Politècnica de Catalunya. GReCEF- Grup de Recerca en Ciència i Enginyeria de Fluids, Myers, Timothy, Font Martínez, Francesc, Hennessy, Matthew G., Universitat Politècnica de Catalunya. Departament de Mecànica de Fluids, Universitat Politècnica de Catalunya. GReCEF- Grup de Recerca en Ciència i Enginyeria de Fluids, Myers, Timothy, Font Martínez, Francesc, and Hennessy, Matthew G.
- Abstract
A mathematical model of the process of carbon capture in a packed column by adsorption is developed and analysed. First a detailed study is made of the governing equations. Due to the complexity of the internal geometry it is standard practice to average these equations. Here the averaging process is revisited. This shows that there exists a number of errors and some confusion in the standard systems studied in the literature. These errors affect the parameter estimation, with consequences when the experimental set-up is modified or scaled-up. Assuming, as a first approximation, an isothermal model the gas concentration equation is solved numerically. Excellent agreement with data from a pressure swing adsorption experiment is demonstrated. A new analytical solution (valid away from the inlet) is obtained. This provides explicit relations for quantities such as the amount of adsorbed gas, time of first breakthrough, total process time and width and speed of the reaction zone, showing how these depend on the operating conditions and material parameters. The relations show clearly how to optimise the carbon capture process. By comparison with experimental data the analytical solution may also be used to calculate unknown system parameters., Postprint (author's final draft)
- Published
- 2020
5. Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits : A bifurcation analysis
- Author
-
Nurtay, Anel, Hennessy, Matthew G., Sardanyés, Josep, Alsedà i Soler, Lluís, Elena, Santiago F., Universitat Autònoma de Barcelona. Departament de Matemàtiques, Nurtay, Anel, Hennessy, Matthew G., Sardanyés, Josep, Alsedà i Soler, Lluís, Elena, Santiago F., and Universitat Autònoma de Barcelona. Departament de Matemàtiques
- Abstract
Altres ajuts: CERCA Programme/Generalitat de Catalunya, We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov-Takens and zero- Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner.
- Published
- 2019
6. Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: a bifurcation analysis
- Author
-
Fundación la Caixa, Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Nurtay, Anel, Hennessy, Matthew G., Sardanyés, Josep, Alsedà, Lluís, Elena, Santiago F., Fundación la Caixa, Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Nurtay, Anel, Hennessy, Matthew G., Sardanyés, Josep, Alsedà, Lluís, and Elena, Santiago F.
- Abstract
We investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov–Takens and zero-Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.