1. From blue hydrochars to activated carbons : Hydrothermal carbonization, chemical activation and gas adsorption
- Author
-
Saadattalab, Vahid and Saadattalab, Vahid
- Abstract
Hydrothermal carbonization (HTC) of carbohydrates and biomass is a straightforward method for preparing hydrochars at low temperatures of 180-250 °C. Hydrochars are more carbonized than their precursors. Increasing the carbonization degree of hydrochars at hydrothermal temperatures is a scientific quest that is addressed in this thesis. Hydrochars are known to have a spherical or irregular morphology. Here we address thin film hydrochars for the first time. Hydrochars themselves are carbon precursors for preparing activated carbons. Activated carbons are porous materials that can be used for gas adsorption applications. In this thesis, enhanced adsorption of VOCs at low pressures is addressed by using iron phosphate impregnated activated carbons. Finaly, any chemical process or product including those in this thesis such as HTC, activation, hydrochar and activated carbons may contribute to the issue of environmental degradation positively or negatively. Such environmental impacts are addressed by life cycle assessment of processes of HTC and activation and their related products in the last paper of this thesis. Briefly mentioned, in my first study (Paper I), I focused on the HTC of glucose in the presence of iron (II) sulfate. By changing the concentration of iron (II) sulfate, with a catalytic amount, blue hydrochars were formed at the bottom of the autoclave. The blueness was related to thin film interference. The thin film hydrochars were more carbonized than spherical hydrochars and the yield of HTC has increased in the presence of iron (II) sulfate. The second study (Paper II) is focused on the activation of hydrochars with H3PO4 and H3PO4+FeCl3. We showed that ultramicroporosity and impregnated iron phosphate species enhance the adsorption of VOCs at low pressure. The ACs were impregnated with Fe (PO3)2 and it was shown that Fe (PO3)2 acts as an activation agent which opens up for future studies. In the third study (Paper III), H3PO4-activated carbons were p
- Published
- 2024