1. Investigating the Source of Particulate Matter Toxicity: Kinetics of Reactive Oxygen Species from Biomass Burning Components in Lung Lining Fluids and Characterization of Toxic Components
- Author
-
Gonzalez-Martinez, David Hilario, Paulson, Suzanne E1, Gonzalez-Martinez, David Hilario, Gonzalez-Martinez, David Hilario, Paulson, Suzanne E1, and Gonzalez-Martinez, David Hilario
- Abstract
Epidemiological studies have shown that inhalation of particulate matter (PM) is associated with increased cardiovascular diseases, respiratory diseases, asthma and cancer. However, the underlying biological mechanisms and PM components responsible for adverse health outcomes are poorly understood. Induction of oxidative stress mediated by an overproduction of reactive oxygen species (ROS) is one hypothesis for PM induced health effects. The PM components responsible for ROS generation and under conditions relevant to the lung are not well known. Inhalation of PM containing of water-soluble like substances (HULIS) are thought to disrupt cellular iron homeostasis, contributing to the development of pulmonary inflammation and disease. Cigarette smoke and wood smoke contain significant amounts of HULIS, but there is scant literature characterizing HULIS in these particles. Malondialdehyde (MDA) is a toxic aldehyde traditionally measured in biological systems as a marker for oxidative stress. Interestingly, a handful of literature suggests that MDA may be present in ambient PM, potentially adding to the toxicity of inhaled PM. However, no study has quantified MDA in ambient PM. In this work we apply the terephthalate probe, thermodynamic modeling and chemical kinetics modeling to elucidate mechanisms of OH generation from HULIS-Fe interactions in simulated lung fluids (SLF) and human bronchoalveolar lavage fluids (BALF). We employ fluorescence and infrared spectroscopy to characterize HULIS isolated from the water-soluble fraction of cigarette smoke condensate and wood smoke particles. We apply the 2-thiobarbituric acid method on biomass burning and urban PM2.5 to quantify ambient particle phase MDA for the first time.We use Suwannee River Fulvic Acid (SRFA) as a surrogate for HULIS and investigate its impact on OH generation from Fe(II) in SLF and BALF. Model and experimental results are used to find best-fit rate coefficients for key reactions. In SLF, modeling result
- Published
- 2019