1. Determination of biological activity of gonadotropins hCG and FSH by Forster resonance energy transfer based biosensors
- Author
-
University of Helsinki, Clinicum, Mazina, Olga, Allikalt, Anni, Tapanainen, Juha S., Salumets, Andres, Rinken, Ago, University of Helsinki, Clinicum, Mazina, Olga, Allikalt, Anni, Tapanainen, Juha S., Salumets, Andres, and Rinken, Ago
- Abstract
Determination of biological activity of gonadotropin hormones is essential in reproductive medicine and pharmaceutical manufacturing of the hormonal preparations. The aim of the study was to adopt a G-protein coupled receptor (GPCR)-mediated signal transduction pathway based assay for quantification of biological activity of gonadotropins. We focussed on studying human chorionic gonadotropin (hCG) and follicle-stimulating hormone (FSH), as these hormones are widely used in clinical practice. Receptor-specific changes in cellular cyclic adenosine monophosphate (cAMP, second messenger in GPCR signalling) were monitored by a Forster resonance energy transfer (FRET) biosensor protein (T)Epac(VV) in living cells upon activation of the relevant gonadotropin receptor. The BacMam gene delivery system was used for biosensor protein expression in target cells. In the developed assay only biologically active hormones initiated GPCR-mediated cellular signalling. High assay sensitivities were achieved for detection of hCG (limit of detection, LOD: 5 pM) and FSH (LOD: 100 pM). Even the smallscale conformational changes caused by thermal inactivation and reducing the biological activity of the hormones were registered. In conclusion, the proposed assay is suitable for quantification of biological activity of gonadotropins and is a good alternative to antibody- and animal-testing-based assays used in pharmaceutical industry and clinical research.
- Published
- 2017