1. Directional Smoothness and Gradient Methods: Convergence and Adaptivity
- Author
-
Mishkin, Aaron, Khaled, Ahmed, Wang, Yuanhao, Defazio, Aaron, Gower, Robert M., Mishkin, Aaron, Khaled, Ahmed, Wang, Yuanhao, Defazio, Aaron, and Gower, Robert M.
- Abstract
We develop new sub-optimality bounds for gradient descent (GD) that depend on the conditioning of the objective along the path of optimization, rather than on global, worst-case constants. Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective. Minimizing these upper-bounds requires solving implicit equations to obtain a sequence of strongly adapted step-sizes; we show that these equations are straightforward to solve for convex quadratics and lead to new guarantees for two classical step-sizes. For general functions, we prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness. Experiments on logistic regression show our convergence guarantees are tighter than the classical theory based on L-smoothness., Comment: Twenty-four pages
- Published
- 2024