1. Crustal-scale fluid circulation and co-seismic shallow comb-veining along the longest normal fault of the central Apennines, Italy
- Author
-
Smeraglia, L, Bernasconi, S, Berra, F, Billi, A, Boschi, C, Caracausi, A, Carminati, E, Castorina, F, Doglioni, C, Italiano, F, Rizzo, A, Uysal, I, Zhao, J, Smeraglia L, Bernasconi SM, Berra F, Billi A, Boschi C, Caracausi A, Carminati E, Castorina F, Doglioni C, Italiano F, Rizzo A, Uysal IT, Zhao J-X, Smeraglia, L, Bernasconi, S, Berra, F, Billi, A, Boschi, C, Caracausi, A, Carminati, E, Castorina, F, Doglioni, C, Italiano, F, Rizzo, A, Uysal, I, Zhao, J, Smeraglia L, Bernasconi SM, Berra F, Billi A, Boschi C, Caracausi A, Carminati E, Castorina F, Doglioni C, Italiano F, Rizzo A, Uysal IT, and Zhao J-X
- Abstract
The extensional Val Roveto Fault, which is the longest exhumed potentially-seismogenic structure of central Apennines, Italy, is examined to constrain earthquake-related fluid circulation and fluid sources within shallow carbonate-hosted faults. The study focuses on fault-related comb and slip-parallel veins that are calcite-filled and cut through the principal surface of the Val Roveto Fault. We observe multiple crack-and-seal events characterized by several veining episodes, probably related to different slip increments along the fault plane. We show that vein calcite precipitated in Late Pleistocene time below the present-day outcrop level at a maximum depth of ∼350 m and temperatures between 32 and 64 °C from meteoric-derived fluids modified by reactions with crustal rocks and with a mantle contribution (up to ∼39%). The observed warm temperatures are not compatible with a shallow (≤∼350 m) precipitation depth, which, in this region, is dominated by circulation of cold meteoric water and/or shallow groundwater. Based on structural–geochemical data, we propose that deep-seated crust–mantle-derived warm fluids were squeezed upward during earthquakes and were hence responsible for calcite precipitation at shallow depths in co-seismic comb and slip-parallel fractures. As comb- and slip-parallel veins are rather common, particularly along seismogenic extensional faults, we suggest that further studies are necessary to test whether these veins are often of co-seismic origin. If so, they may become a unique and irreplaceable tool to unravel the seismic history of hazardous active faults.
- Published
- 2018