1. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6
- Author
-
Tebaldi, C, Debeire, K, Eyring, V, Fischer, E, Fyfe, J, Friedlingstein, P, Knutti, R, Lowe, J, O'Neill, B, Sanderson, B, van Vuuren, D, Riahi, K, Meinshausen, M, Nicholls, Z, Tokarska, KB, Hurtt, G, Kriegler, E, Lamarque, J-F, Meehl, G, Moss, R, Bauer, SE, Boucher, O, Brovkin, V, Byun, Y-H, Dix, M, Gualdi, S, Guo, H, John, JG, Kharin, S, Kim, Y, Koshiro, T, Ma, L, Olivie, D, Panickal, S, Qiao, F, Rong, X, Rosenbloom, N, Schupfner, M, Seferian, R, Sellar, A, Semmler, T, Shi, X, Song, Z, Steger, C, Stouffer, R, Swart, N, Tachiiri, K, Tang, Q, Tatebe, H, Voldoire, A, Volodin, E, Wyser, K, Xin, X, Yang, S, Yu, Y, Ziehn, T, Tebaldi, C, Debeire, K, Eyring, V, Fischer, E, Fyfe, J, Friedlingstein, P, Knutti, R, Lowe, J, O'Neill, B, Sanderson, B, van Vuuren, D, Riahi, K, Meinshausen, M, Nicholls, Z, Tokarska, KB, Hurtt, G, Kriegler, E, Lamarque, J-F, Meehl, G, Moss, R, Bauer, SE, Boucher, O, Brovkin, V, Byun, Y-H, Dix, M, Gualdi, S, Guo, H, John, JG, Kharin, S, Kim, Y, Koshiro, T, Ma, L, Olivie, D, Panickal, S, Qiao, F, Rong, X, Rosenbloom, N, Schupfner, M, Seferian, R, Sellar, A, Semmler, T, Shi, X, Song, Z, Steger, C, Stouffer, R, Swart, N, Tachiiri, K, Tang, Q, Tatebe, H, Voldoire, A, Volodin, E, Wyser, K, Xin, X, Yang, S, Yu, Y, and Ziehn, T
- Abstract
The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the main set of future climate projections, based on concentration-driven simulations, within the Coupled Model Intercomparison Project phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the participating global coupled Earth system models. We limit our scope to the analysis of strictly geophysical outcomes: mainly global averages and spatial patterns of change for surface air temperature and precipitation. We also compare CMIP6 projections to CMIP5 results, especially for those scenarios that were designed to provide continuity across the CMIP phases, at the same time highlighting important differences in forcing composition, as well as in results. The range of future temperature and precipitation changes by the end of the century (2081–2100) encompassing the Tier 1 experiments based on the Shared Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and SSP1-1.9 spans a larger range of outcomes compared to CMIP5, due to higher warming (by close to 1.5 ∘C) reached at the upper end of the 5 %–95 % envelope of the highest scenario (SSP5-8.5). This is due to both the wider range of radiative forcing that the new scenarios cover and the higher climate sensitivities in some of the new models compared to their CMIP5 predecessors. Spatial patterns of change for temperature and precipitation averaged over models and scenarios have familiar features, and an analysis of their variations confirms model structural differences to be the dominant source of uncertainty. Models also differ with respect to the size and evolution of internal variability as measured by individual models' initial condition ensemble spreads, according to a set of initial condition ensemble simulations available under SSP3-7.0. These experiments suggest a tendency for internal variability to decrease along the course of the century in this scenario
- Published
- 2021