6 results on '"ALJABRI, JAWHARA"'
Search Results
2. mini-ELSA: using Machine Learning to improve space efficiency in Edge Lightweight Searchable Attribute-based encryption for Industry 4.0
- Author
-
Aljabri, Jawhara, Michala, Anna Lito, Singer, Jeremy, Vourganas, Ioannis, Aljabri, Jawhara, Michala, Anna Lito, Singer, Jeremy, and Vourganas, Ioannis
- Abstract
In previous work a novel Edge Lightweight Searchable Attribute-based encryption (ELSA) method was proposed to support Industry 4.0 and specifically Industrial Internet of Things applications. In this paper, we aim to improve ELSA by minimising the lookup table size and summarising the data records by integrating Machine Learning (ML) methods suitable for execution at the edge. This integration will eliminate records of unnecessary data by evaluating added value to further processing. Thus, resulting in the minimization of both the lookup table size, the cloud storage and the network traffic taking full advantage of the edge architecture benefits. We demonstrate our mini-ELSA expanded method on a well-known power plant dataset. Our results demonstrate a reduction of storage requirements by 21% while improving execution time by 1.27x.
- Published
- 2022
3. Secure monitoring system for industrial internet of things using searchable encryption, access control and machine learning
- Author
-
Aljabri, Jawhara Bader and Aljabri, Jawhara Bader
- Abstract
This thesis is an alternative format submission comprising a set of publications and a comprehensive literature review, an introduction, and a conclusion. Continuous compliance with data protection legislation on many levels in the Industrial Internet of Things (IIoT) is a significant challenge. Automated continuous compliance should also consider adaptable security compliance management for multiple users. The IIoT should automate compliance with corporate rules, regulations, and regulatory frameworks for industrial applications. Thus, this thesis aims to improve continuous compliance by introducing an edge-server architecture which incorporates searchable encryption with multi-authority access to provide access to useful data for various stakeholders in the compliance domain. In this thesis, we propose an edge lightweight searchable attribute-based encryption system (ELSA). The ELSA system leverages cloud-edge architecture to improve search time beyond a previous state-ofthe-art encryption solution. The main contributions of the first paper are as follows. First, we npresent an untrusted cloud and trusted edge architecture that processes data efficiently and optimises decision-making in the IIoT context. Second, we enhanced the search performance over the current state-of-the-art (LSABE-MA) regarding order of magnitude. We achieved this enhancement by storing keywords only on the trusted edge server and introducing a query optimiser to achieve better-than-linear search performance. The query optimiser uses k-means clustering to improve the efficiency of range queries, removing the need for a linear search. As a result, we achieved higher performance without sacrificing result accuracy. In the second paper, we extended ELSA to illustrate the correlation between the number of keywords and ELSA performance. This extension supports annotating records with multiple keywords in trapdoor and record storage and enables the record to be returned with single keyword queries
4. Secure monitoring system for industrial internet of things using searchable encryption, access control and machine learning
- Author
-
Aljabri, Jawhara Bader and Aljabri, Jawhara Bader
- Abstract
This thesis is an alternative format submission comprising a set of publications and a comprehensive literature review, an introduction, and a conclusion. Continuous compliance with data protection legislation on many levels in the Industrial Internet of Things (IIoT) is a significant challenge. Automated continuous compliance should also consider adaptable security compliance management for multiple users. The IIoT should automate compliance with corporate rules, regulations, and regulatory frameworks for industrial applications. Thus, this thesis aims to improve continuous compliance by introducing an edge-server architecture which incorporates searchable encryption with multi-authority access to provide access to useful data for various stakeholders in the compliance domain. In this thesis, we propose an edge lightweight searchable attribute-based encryption system (ELSA). The ELSA system leverages cloud-edge architecture to improve search time beyond a previous state-ofthe-art encryption solution. The main contributions of the first paper are as follows. First, we npresent an untrusted cloud and trusted edge architecture that processes data efficiently and optimises decision-making in the IIoT context. Second, we enhanced the search performance over the current state-of-the-art (LSABE-MA) regarding order of magnitude. We achieved this enhancement by storing keywords only on the trusted edge server and introducing a query optimiser to achieve better-than-linear search performance. The query optimiser uses k-means clustering to improve the efficiency of range queries, removing the need for a linear search. As a result, we achieved higher performance without sacrificing result accuracy. In the second paper, we extended ELSA to illustrate the correlation between the number of keywords and ELSA performance. This extension supports annotating records with multiple keywords in trapdoor and record storage and enables the record to be returned with single keyword queries
5. Secure monitoring system for industrial internet of things using searchable encryption, access control and machine learning
- Author
-
Aljabri, Jawhara Bader and Aljabri, Jawhara Bader
- Abstract
This thesis is an alternative format submission comprising a set of publications and a comprehensive literature review, an introduction, and a conclusion. Continuous compliance with data protection legislation on many levels in the Industrial Internet of Things (IIoT) is a significant challenge. Automated continuous compliance should also consider adaptable security compliance management for multiple users. The IIoT should automate compliance with corporate rules, regulations, and regulatory frameworks for industrial applications. Thus, this thesis aims to improve continuous compliance by introducing an edge-server architecture which incorporates searchable encryption with multi-authority access to provide access to useful data for various stakeholders in the compliance domain. In this thesis, we propose an edge lightweight searchable attribute-based encryption system (ELSA). The ELSA system leverages cloud-edge architecture to improve search time beyond a previous state-ofthe-art encryption solution. The main contributions of the first paper are as follows. First, we npresent an untrusted cloud and trusted edge architecture that processes data efficiently and optimises decision-making in the IIoT context. Second, we enhanced the search performance over the current state-of-the-art (LSABE-MA) regarding order of magnitude. We achieved this enhancement by storing keywords only on the trusted edge server and introducing a query optimiser to achieve better-than-linear search performance. The query optimiser uses k-means clustering to improve the efficiency of range queries, removing the need for a linear search. As a result, we achieved higher performance without sacrificing result accuracy. In the second paper, we extended ELSA to illustrate the correlation between the number of keywords and ELSA performance. This extension supports annotating records with multiple keywords in trapdoor and record storage and enables the record to be returned with single keyword queries
6. Secure monitoring system for industrial internet of things using searchable encryption, access control and machine learning
- Author
-
Aljabri, Jawhara Bader and Aljabri, Jawhara Bader
- Abstract
This thesis is an alternative format submission comprising a set of publications and a comprehensive literature review, an introduction, and a conclusion. Continuous compliance with data protection legislation on many levels in the Industrial Internet of Things (IIoT) is a significant challenge. Automated continuous compliance should also consider adaptable security compliance management for multiple users. The IIoT should automate compliance with corporate rules, regulations, and regulatory frameworks for industrial applications. Thus, this thesis aims to improve continuous compliance by introducing an edge-server architecture which incorporates searchable encryption with multi-authority access to provide access to useful data for various stakeholders in the compliance domain. In this thesis, we propose an edge lightweight searchable attribute-based encryption system (ELSA). The ELSA system leverages cloud-edge architecture to improve search time beyond a previous state-ofthe-art encryption solution. The main contributions of the first paper are as follows. First, we npresent an untrusted cloud and trusted edge architecture that processes data efficiently and optimises decision-making in the IIoT context. Second, we enhanced the search performance over the current state-of-the-art (LSABE-MA) regarding order of magnitude. We achieved this enhancement by storing keywords only on the trusted edge server and introducing a query optimiser to achieve better-than-linear search performance. The query optimiser uses k-means clustering to improve the efficiency of range queries, removing the need for a linear search. As a result, we achieved higher performance without sacrificing result accuracy. In the second paper, we extended ELSA to illustrate the correlation between the number of keywords and ELSA performance. This extension supports annotating records with multiple keywords in trapdoor and record storage and enables the record to be returned with single keyword queries
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.