1. The Physics of Cooling Flow Clusters with Central Radio Sources
- Author
-
Sarazin, Craig L
- Subjects
Astrophysics - Abstract
Central galaxies in rich clusters are the sites of cluster cooling flows, with large masses of gas cooling through part of the X-ray band. Many of these galaxies host powerful radio sources. These sources can displace and compress the X-ray gas leading to enhanced cooling and star formation. We observed the bright cooling flow Abell 2626 with a strangely distorted central radio source. We wished to understand the interaction of radio and X-ray thermal plasma, and to determine the dynamical nature of this cluster. One aim was to constrain the source of additional pressure in radio "holes" in the X-ray emission needed to support overlying shells of X-ray gas. We also aimed to study the problem of the lack of kT < 1-2 keV gas in cooling flows by searching for abundance inhomogeneities, heating from the radio source, and excess absorption. We also have a Chandra observation of this cluster. There were problems with the pipeline processing of this data due to a telemetry dropout. We are publishing the Chandra and XMM data together. Delays with the Chandra data have slowed up the publication. At the center of the cluster, there is a complex interaction of the odd, Z-shaped radio source, and the X-ray plasma. However, there are no clear radio bubbles. Also, the cluster SO galaxy IC 5337, which is projected 1.5 arcmin west of the cluster center, has unusual tail-like structures in both the radio and X-ray. It appears to be falling into the cluster center. There is a hot, probably shocked region of gas to the southwest, which is apparently due to the merger of a subcluster in this part of the system. There is also a merging subcluster to the northeast. The axes of these two mergers agrees with a supercluster filament structure.
- Published
- 2005