47 results on '"root water uptake"'
Search Results
2. Individual Versus Combined Effects of Warming, Elevated CO 2 and Drought on Grassland Water Uptake and Fine Root Traits.
- Author
-
Tissink M, Radolinski J, Reinthaler D, Venier S, Pötsch EM, Schaumberger A, and Bahn M
- Abstract
Increasing warming, atmospheric CO
2 and drought are expected to change the water dynamics of terrestrial ecosystems. Yet, limited knowledge exists about how the interactive effects of these factors will affect grassland water uptake, and whether adaptations in fine root production and traits will alter water uptake capacity. In a managed C3 grassland, we tested the individual and combined effects of warming (+3°C), elevated CO2 (eCO2 ; +300 ppm) and drought on root water uptake (RWU) as well as on fine root production, trait adaptation, and fine root-to-shoot production ratios, and their relationships with RWU capacity. High temperatures, amplified by warming, exacerbated RWU reductions under drought, with negligible water-sparing effects from eCO2 . Drought, both under current and future (warming, eCO2 ) climatic conditions, shifted RWU towards deeper soil layers. Overall, RWU capacity related positively to fine root production and specific root length (SRL), and negatively to mean root diameters. Warming effects on traits (reduced SRL, increased diameter) and the ratio of fine root-to-shoot production (increased) were offset by eCO2 . We conclude that under warmer future conditions, irrespective of shifts in water sourcing, it is particularly hot droughts that will lead to increasingly severe restrictions of grassland water dynamics., (© 2024 The Author(s). Plant, Cell & Environment published by John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
3. Numerical modeling of PFAS movement through the vadose zone: Influence of plant water uptake and soil organic carbon distribution.
- Author
-
Biesek BJ, Szymkiewicz A, Šimůnek J, Gumuła-Kawęcka A, and Jaworska-Szulc B
- Abstract
In this study, we investigated the effects of soil organic carbon (SOC) distribution and water uptake by plant roots on PFAS movement in the vadose zone with a deep groundwater table under temperate, humid climate conditions. Two series of numerical simulations were performed with the HYDRUS computer code, representing the leaching of historical PFOS contamination and the infiltration of water contaminated with PFOA, respectively. We considered soil profiles with three distributions of SOC (no SOC, realistic SOC distribution decreasing with depth, and uniform SOC equal to the content measured in topsoil), three root distributions (bare soil, grassland, and forest), and three soil textures (sand, sandy loam, and loam). The SOC distribution had a profound impact on the velocity of PFOS movement. The apparent retardation factor for realistic SOC distribution was twice as large as for the scenario with no SOC and more than three times smaller than for the scenario with uniformly high SOC content. We also showed that the root distribution in soil profoundly impacts the simulations of PFAS migration through soil. Including the root zone significantly slows down the movement of PFAS, primarily due to increased evapotranspiration and reduced downward water flux. Another effect of water uptake by plant roots is an increase of PFAS concentrations in soil water (evapo-concentration). The evapo-concentration and the slowdown of PFAS movement due to root water uptake are more significant in fine-textured soils than in sand., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Drought effects on trait space of winter wheat are independent of land management.
- Author
-
Sun Q, Gilgen AK, Wittwer R, von Arx G, van der Heijden MGA, Klaus VH, and Buchmann N
- Subjects
- Principal Component Analysis, Plant Leaves physiology, Agriculture methods, Plant Roots physiology, Plant Roots growth & development, Triticum physiology, Triticum growth & development, Droughts, Water, Seasons, Quantitative Trait, Heritable
- Abstract
Investigating plant responses to climate change is key to develop suitable adaptation strategies. However, whether changes in land management can alleviate increasing drought threats to crops in the future is still unclear. We conducted a management × drought experiment with winter wheat (Triticum aestivum L.) to study plant water and vegetative traits in response to drought and management (conventional vs organic farming, with intensive vs conservation tillage). Water traits (root water uptake pattern, stem metaxylem area, leaf water potential, stomatal conductance) and vegetative traits (plant height, leaf area, leaf Chl content) were considered simultaneously to characterise the variability of multiple traits in a trait space, using principal component analysis. Management could not alleviate the drought impacts on plant water traits as it mainly affected vegetative traits, with yields ultimately being affected by both management and drought. Trait spaces were clearly separated between organic and conventional management as well as between drought and control conditions. Moreover, changes in trait space triggered by management and drought were independent from each other. Neither organic management nor conservation tillage eased drought impacts on winter wheat. Thus, our study raised concerns about the effectiveness of these management options as adaptation strategies to climate change., (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
- Published
- 2024
- Full Text
- View/download PDF
5. In-situ measurements of dissolved gases in xylem sap as tracers in plant physiology.
- Author
-
Marion C, Gharun M, Brennwald MS, and Kipfer R
- Abstract
Trees transport gases from below ground into the atmosphere through the process of transpiration. Tracing gases transported through this mechanism continuously and under field conditions remains an experimental challenge. Here we measured gases dissolved in tree sap in-situ and in real time, aiming to simultaneously analyse the transport of several gases (He, Ar, Kr, N2, O2, CO2) from the soil, through the trees, into the atmosphere. We constructed and inserted custom-made semi-permeable membrane probes in the xylem of a fir tree and measured gas abundances at different heights using a portable gas equilibrium membrane-inlet mass spectrometer ('miniRUEDI'). With this method we were able to continuously measure the abundances of He, Ar, Kr, N2, O2, CO2 in sap over several weeks. We observed diurnal variations of CO2 and O2 concentrations that reflected tree physiological activities. As a proof of concept that trees do uptake dissolved gases in soil water, we irrigated the tree with He-enriched water in a tracer experiment, and were able to determine upwards sap flow velocity. Measurements of inert gases together with reactive species as CO2 and O2 allows to separate physical transport and exchange of gases derived from the soil or the atmosphere from biological reactions. We discuss the opportunities that our technique provides for continuous in-situ measurements of gases in tree sap., (© The Author(s) 2024. Published by Oxford University Press.)
- Published
- 2024
- Full Text
- View/download PDF
6. Dynamic modeling of stem water content during the dormant period in walnut trees.
- Author
-
Charrier G and Améglio T
- Subjects
- Water physiology, Trees physiology, Cold Temperature, Seasons, Soil, Juglans physiology
- Abstract
Water content (WC) is a key variable in plant physiology even during the winter period. To simulate stem WC during the dormant season, a series of experiments were carried out on walnut trees under controlled conditions. In the field, WC was significantly correlated with soil temperature at 50 cm depth (R2 = 0.526). In the greenhouse, WC remained low as long as soil temperature was kept cold (<+5 °C) and increased after the soil temperature was warmed to +15 °C regardless of the date. Stem dehydration rate was significantly influenced by the WC and evaporative demand. A parsimonious model with functions describing the main experimental results was calibrated and validated with field data from 13 independent winter dynamics in Juglans regia L. orchards. Three functions of water uptake were tested, and these gave equivalent accuracies (root-mean-square error (RMSE) = 0.127-8; predictive root-mean-square error = 0.116). However, only a sigmoid function describing the relationship between the root water uptake and soil temperature gave values in agreement with the experimental results. Finally, the simulated WC provided a similar accuracy in predicting frost hardiness compared with the measured WC (RMSE ca 3 °C) and was excellent in spring (RMSE ca 2 °C). This model may be a relevant tool for predicting the risk of spring frost in walnut trees. Its genericity should be tested in other fruit and forest tree species., (© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
7. Effects of vegetation roots on the structure and hydraulic properties of soils: A perspective review.
- Author
-
Xiao T, Li P, Fei W, and Wang J
- Abstract
This paper aims to provide a state-of-the-art review on the effects of vegetation roots on the soil structure and soil hydraulic properties. After a thorough review of current studies, the effects of vegetation roots are summarized into four: root exudation, root penetration, root water uptake and root decay. Root exudates alter the size and stability of aggregates, the contact angle of soil, and the viscosity and surface tension of pore fluid; root exudates of crops always increase the soil water retention capacity and decrease the soil saturated hydraulic conductivity. Root penetration creates new pores or clogs existing pores during root growth, and root parameters (e.g., root biomass density, root diameter and root length density) are well correlated to soil hydraulic properties. Root water uptake can apparently increase the soil water retention capacity by providing an additional negative pressure and induce micro-fissures and macropores in the rhizosphere soil. Root decay modifies the pore structure and water repellency of soil, resulting in the increase of soil macro-porosity, soil water retention, and the saturated hydraulic conductivity or steady infiltration rate. Some of the above four effects may be difficult to be distinguished, and most importantly each is highly time-dependent and influenced by a multitude of plant-related and soil-related factors. Therefore, it remains a significant challenge to comprehend and quantify the effects of vegetation roots on the soil structure and soil hydraulic properties. Unsolved questions and disputes that require further investigations in the future are summarized in this review., Competing Interests: Declaration of competing interest The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
8. The effect of root hairs on root water uptake is determined by root-soil contact and root hair shrinkage.
- Author
-
Duddek P, Ahmed MA, Javaux M, Vanderborght J, Lovric G, King A, and Carminati A
- Subjects
- Water, Rhizosphere, X-Ray Microtomography, Zea mays, Soil chemistry, Plant Roots
- Abstract
The effect of root hairs on water uptake remains controversial. In particular, the key root hair and soil parameters that determine their importance have been elusive. We grew maize plants (Zea mays) in microcosms and scanned them using synchrotron-based X-ray computed microtomography. By means of image-based modelling, we investigated the parameters determining the effectiveness of root hairs in root water uptake. We explicitly accounted for rhizosphere features (e.g. root-soil contact and pore structure) and took root hair shrinkage of dehydrated root hairs into consideration. Our model suggests that > 85% of the variance in root water uptake is explained by the hair-induced increase in root-soil contact. In dry soil conditions, root hair shrinkage reduces the impact of hairs substantially. We conclude that the effectiveness of root hairs on root water uptake is determined by the hair-induced increase in root-soil contact and root hair shrinkage. Although the latter clearly reduces the effect of hairs on water uptake, our model still indicated facilitation of water uptake by root hairs at soil matric potentials from -1 to -0.1 MPa. Our findings provide new avenues towards a mechanistic understanding of the role of root hairs on water uptake., (© 2023 The Authors New Phytologist © 2023 New Phytologist Foundation.)
- Published
- 2023
- Full Text
- View/download PDF
9. Coordination of available soil water content and root distribution modifies water source apportionment of the shrub plant Caragana korshinskii.
- Author
-
Zhao Y and Wang L
- Subjects
- Soil, Water, Bayes Theorem, Isotopes, Caragana
- Abstract
Stable isotopes have been widely used to identify root water uptake (RWU) by classifying potential water sources as distinct endmembers and evaluating their contributions to xylem water. However, the estimated contributions of endmembers (mainly soil layers) are usually based on variations in soil water isotopes alone. Available soil water and root distributions are key limiting factors of RWU but are rarely considered in water source apportionment. Thus, we have compared the relative contributions of distinct soil layers based on mean soil water isotope values, and values weighted by both available soil water content (AWC) and root weight density (RWD), to RWU of Caragana korshinskii. We derived these values (hereafter mean and weighted contributions, respectively) using three Bayesian mixing models (SIAR, simmr and MixSIAR) at three sites with different water conditions. We calculated the differences between the mean and weighted contributions (DC) and the accumulation of the absolute value of DC (AADC) to analyse the differences between them and their relationships with AWC and RWD. Both the weighted and mean contributions varied with sites and models. We obtained the following AADC values: 27, 8 and 11 % for Sites 1-3, respectively, using SIAR; 39, 13 and 14 %, respectively, using simmr; 68, 40 and 25 %, respectively, using MixSIAR. We detected a significant correlation between DC and RWD when AWC ≤ 6 %, as well as a significant correlation between DC and AWC when AWC > 6 %, indicating that the influence of RWD on DC depended on soil water conditions. Based on our findings, endmembers weighted by AWC and RWD altered the proportion of water source allocation relative to non-weighted endmembers, while the magnitude of the effect was related to the model used. Thus, we suggest careful consideration of the characterisation of endmember isotopes and model selection when partitioning plant water sources using δ
2 H and δ18 O., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
10. Transpiration response to soil drying versus increasing vapor pressure deficit in crops: physical and physiological mechanisms and key plant traits.
- Author
-
Koehler T, Wankmüller FJP, Sadok W, and Carminati A
- Subjects
- Vapor Pressure, Plant Breeding, Water physiology, Crops, Agricultural, Plant Leaves physiology, Plant Stomata physiology, Soil, Plant Transpiration physiology
- Abstract
The water deficit experienced by crops is a function of atmospheric water demand (vapor pressure deficit) and soil water supply over the whole crop cycle. We summarize typical transpiration response patterns to soil and atmospheric drying and the sensitivity to plant hydraulic traits. We explain the transpiration response patterns using a soil-plant hydraulic framework. In both cases of drying, stomatal closure is triggered by limitations in soil-plant hydraulic conductance. However, traits impacting the transpiration response differ between the two drying processes and act at different time scales. A low plant hydraulic conductance triggers an earlier restriction in transpiration during increasing vapor pressure deficit. During soil drying, the impact of the plant hydraulic conductance is less obvious. It is rather a decrease in the belowground hydraulic conductance (related to soil hydraulic properties and root length density) that is involved in transpiration down-regulation. The transpiration response to increasing vapor pressure deficit has a daily time scale. In the case of soil drying, it acts on a seasonal scale. Varieties that are conservative in water use on a daily scale may not be conservative over longer time scales (e.g. during soil drying). This potential independence of strategies needs to be considered in environment-specific breeding for yield-based drought tolerance., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Published
- 2023
- Full Text
- View/download PDF
11. Stress-induced deeper rooting introgression enhances wheat yield under terminal drought.
- Author
-
Bacher H, Montagu A, Herrmann I, Walia H, Schwartz N, and Peleg Z
- Subjects
- Plant Breeding, Phenotype, Water, Triticum genetics, Droughts
- Abstract
Water scarcity is the primary environmental constraint affecting wheat growth and production and is increasingly exacerbated due to climatic fluctuation, which jeopardizes future food security. Most breeding efforts to improve wheat yields under drought have focused on above-ground traits. Root traits are closely associated with various drought adaptability mechanisms, but the genetic variation underlying these traits remains untapped, even though it holds tremendous potential for improving crop resilience. Here, we examined this potential by re-introducing ancestral alleles from wild emmer wheat (Triticum turgidum ssp. dicoccoides) and studied their impact on root architecture diversity under terminal drought stress. We applied an active sensing electrical resistivity tomography approach to compare a wild emmer introgression line (IL20) and its drought-sensitive recurrent parent (Svevo) under field conditions. IL20 exhibited greater root elongation under drought, which resulted in higher root water uptake from deeper soil layers. This advantage initiated at the pseudo-stem stage and increased during the transition to the reproductive stage. The increased water uptake promoted higher gas exchange rates and enhanced grain yield under drought. Overall, we show that this presumably 'lost' drought-induced mechanism of deeper rooting profile can serve as a breeding target to improve wheat productiveness under changing climate., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
12. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought.
- Author
-
Abdalla M, Bitterlich M, Jansa J, Püschel D, and Ahmed MA
- Subjects
- Droughts, Water, Crops, Agricultural, Soil, Plant Roots microbiology, Symbiosis, Mycorrhizae physiology
- Abstract
Arbuscular mycorrhizal fungi (AMF) have been presumed to ameliorate crop tolerance to drought. Here, we review the role of AMF in maintaining water supply to plants from drying soils and the underlying biophysical mechanisms. We used a soil-plant hydraulic model to illustrate the impact of several AMF mechanisms on plant responses to edaphic drought. The AMF enhance the soil's capability to transport water and extend the effective root length, thereby attenuating the drop in matric potential at the root surface during soil drying. The synthesized evidence and the corresponding simulations demonstrate that symbiosis with AMF postpones the stress onset limit, which is defined as the disproportionality between transpiration rates and leaf water potentials, during soil drying. The symbiosis can thus help crops survive extended intervals of limited water availability. We also provide our perspective on future research needs and call for reconciling the dynamic changes in soil and root hydraulics in order to better understand the role of AMF in plant water relations in the face of climate changes., (© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
13. Deep-water uptake under drought improved due to locally increased root conductivity in maize, but not in faba bean.
- Author
-
Müllers Y, Postma JA, Poorter H, and van Dusschoten D
- Subjects
- Droughts, Zea mays, Plant Roots, Soil, Water, Vicia faba
- Abstract
Moderate soil drying can cause a strong decrease in the soil-root system conductance. The resulting impact on root water uptake depends on the spatial distribution of the altered conductance relatively to remaining soil water resources, which is largely unknown. Here, we analyzed the vertical distribution of conductance across root systems using a novel, noninvasive sensor technology on pot-grown faba bean and maize plants. Withholding water for 4 days strongly enhanced the vertical gradient in soil water potential. Therefore, roots in upper and deeper soil layers were affected differently: In drier, upper layers, root conductance decreased by 66%-72%, causing an amplification of the drop in leaf water potential. In wetter, deeper layers, root conductance increased in maize but not in faba bean. The consequently facilitated deep-water uptake in maize contributed up to 21% of total water uptake at the end of the measurement. Analysis of root length distributions with MRI indicated that the locally increased conductance was mainly caused by an increased intrinsic conductivity and not by additional root growth. Our findings show that plants can partly compensate for a reduced root conductance in upper, drier soil layers by locally increasing root conductivity in wetter layers, thereby improving deep-water uptake., (© 2023 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
14. Plant water uptake modelling: added value of cross-disciplinary approaches.
- Author
-
Dubbert M, Couvreur V, Kübert A, and Werner C
- Subjects
- Bayes Theorem, Droughts, Plants, Ecosystem, Water, Soil chemistry
- Abstract
In recent years, research interest in plant water uptake strategies has rapidly increased in many disciplines, such as hydrology, plant ecology and ecophysiology. Quantitative modelling approaches to estimate plant water uptake and spatiotemporal dynamics have significantly advanced through different disciplines across scales. Despite this progress, major limitations, for example, predicting plant water uptake under drought or drought impact at large scales, remain. These are less attributed to limitations in process understanding, but rather to a lack of implementation of cross-disciplinary insights into plant water uptake model structure. The main goal of this review is to highlight how the four dominant model approaches, that is, Feddes approach, hydrodynamic approach, optimality and statistical approaches, can be and have been used to create interdisciplinary hybrid models enabling a holistic system understanding that, among other things, embeds plant water uptake plasticity into a broader conceptual view of soil-plant feedbacks of water, nutrient and carbon cycling, or reflects observed drought responses of plant-soil feedbacks and their dynamics under, that is, drought. Specifically, we provide examples of how integration of Bayesian and hydrodynamic approaches might overcome challenges in interpreting plant water uptake related to different travel and residence times of different plant water sources or trade-offs between root system optimization to forage for water and nutrients during different seasons and phenological stages., (© 2022 The Authors. Plant Biology published by John Wiley & Sons Ltd on behalf of German Society for Plant Sciences, Royal Botanical Society of the Netherlands.)
- Published
- 2023
- Full Text
- View/download PDF
15. Comparative cryogenic extraction rehydration experiments reveal isotope fractionation during root water uptake in Gramineae.
- Author
-
Jiang H, Gu H, Chen H, Sun H, Zhang X, and Liu X
- Subjects
- Oxygen Isotopes analysis, Deuterium analysis, Poaceae, Soil, Triticum, Crops, Agricultural, Zea mays, Fluid Therapy, Water, Cardiovascular Diseases
- Abstract
Determining whether isotope fractionation occurs during root water uptake is a prerequisite for using stem or xylem water isotopes to trace water sources. However, it is unclear whether isotope fractionation occurs during root water uptake in gramineous crops. We conducted prevalidation experiments to estimate the isotope measurement bias associated with cryogenic vacuum distillation (CVD). Next, we assessed isotope fractionation during root water uptake in two common agronomic crops, wheat (Triticum aestivum L.) and maize (Zea mays L.), under flooding after postdrought stress conditions. Cryogenic vacuum distillation caused significant depletion of
2 H but negligible effects on18 O for both soil and stem water. Surprisingly CVD caused depletion of2 H and enrichment of18 O in root water. Stem and root water δ18 O were more than soil water δ18 O, even considering the uncertainty of CVD. Soil water18 O was depleted compared with irrigation water18 O in the pots with plants but enriched relative to irrigation water18 O in the pots without plants. These results indicate that isotope fractionation occurred during wheat and maize root water uptake after full irrigation and led to a heavy isotope enrichment in stem water. Therefore, the xylem/stem water isotope approach widely used to trace water sources should be carefully evaluated., (© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.)- Published
- 2022
- Full Text
- View/download PDF
16. Soil-plant interactions modulated water availability of Swiss forests during the 2015 and 2018 droughts.
- Author
-
Meusburger K, Trotsiuk V, Schmidt-Walter P, Baltensweiler A, Brun P, Bernhard F, Gharun M, Habel R, Hagedorn F, Köchli R, Psomas A, Puhlmann H, Thimonier A, Waldner P, Zimmermann S, and Walthert L
- Subjects
- Ecosystem, Forests, Plants, Switzerland, Trees physiology, Water physiology, Droughts, Soil
- Abstract
Central Europe has been experiencing unprecedented droughts during the last decades, stressing the decrease in tree water availability. However, the assessment of physiological drought stress is challenging, and feedback between soil and vegetation is often omitted because of scarce belowground data. Here we aimed to model Swiss forests' water availability during the 2015 and 2018 droughts by implementing the mechanistic soil-vegetation-atmosphere-transport (SVAT) model LWF-Brook90 taking advantage of regionalized depth-resolved soil information. We calibrated the model against soil matric potential data measured from 2014 to 2018 at 44 sites along a Swiss climatic and edaphic drought gradient. Swiss forest soils' storage capacity of plant-available water ranged from 53 mm to 341 mm, with a median of 137 ± 42 mm down to the mean potential rooting depth of 1.2 m. Topsoil was the primary water source. However, trees switched to deeper soil water sources during drought. This effect was less pronounced for coniferous trees with a shallower rooting system than for deciduous trees, which resulted in a higher reduction of actual transpiration (transpiration deficit) in coniferous trees. Across Switzerland, forest trees reduced the transpiration by 23% (compared to potential transpiration) in 2015 and 2018, maintaining annual actual transpiration comparable to other years. Together with lower evaporative fluxes, the Swiss forests did not amplify the blue water deficit. The 2018 drought, characterized by a higher and more persistent transpiration deficit than in 2015, triggered widespread early wilting across Swiss forests that was better predicted by the SVAT-derived mean soil matric potential in the rooting zone than by climatic predictors. Such feedback-driven quantification of ecosystem water fluxes in the soil-plant-atmosphere continuum will be crucial to predicting physiological drought stress under future climate extremes., (© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
17. Negative effects of low root temperatures on water and carbon relations in temperate tree seedlings assessed by dual isotopic labelling.
- Author
-
Wang W and Hoch G
- Subjects
- Carbon, Isotope Labeling, Photosynthesis, Plant Leaves, Temperature, Water, Seedlings, Trees
- Abstract
Low root zone temperatures restrict water and carbon (C) uptake and transport in plants and may contribute to the low temperature limits of tree growth. Here, we quantified the effects of low root temperatures on xylem conductance, photosynthetic C assimilation and phloem C transport in seedlings of four temperate tree species (two broad-leaved and two conifer species) by applying a simultaneous stable isotope labelling of 2H-enriched source water and 13C-enriched atmospheric CO2. Six days before the pulse labelling, the seedlings were transferred to hydroponic tubes and exposed to three different root temperatures (2, 7 and 15 °C), while all seedlings received the same, warm air temperatures (between 18 and 24 °C). Root cooling led to drought-like symptoms with reduced growth, leaf water potentials and stomatal conductance, indicating increasingly adverse conditions for water uptake and transport with decreasing root temperatures. Averaged across all four species, water transport to leaves was reduced by 40% at 7 °C and by 70% at 2 °C root temperature relative to the 15 °C treatment, while photosynthesis was reduced by 20 and 40% at 7 and 2 °C, respectively. The most severe effects were found on the phloem C transport to roots, which was reduced by 60% at 7 °C and almost ceased at 2 °C in comparison with the 15 °C root temperature treatment. This extreme effect on C transport was likely due to a combination of simultaneous reductions of phloem loading, phloem mass flow and root growth. Overall, the dual stable isotope labelling proved to be a useful method to quantify water and C relations in cold-stressed trees and highlighted the potentially important role of hydraulic constraints induced by low soil temperatures as a contributing factor for the climatic distribution limits of temperate tree species., (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
18. Quantification of root water uptake and redistribution using neutron imaging: a review and future directions.
- Author
-
Cai G, Tötzke C, Kaestner A, and Ahmed MA
- Subjects
- Biological Transport, Neutrons, Plant Roots, Soil, Zea mays, Lupinus, Water physiology
- Abstract
Quantifying root water uptake is essential to understanding plant water use and responses to different environmental conditions. However, non-destructive measurement of water transport and related hydraulics in the soil-root system remains a challenge. Neutron imaging, with its high sensitivity to hydrogen, has become an unparalleled tool to visualize and quantify root water uptake in vivo. In combination with isotopes (e.g., deuterated water) and a diffusion-convection model, root water uptake and hydraulic redistribution in root and soil can be quantified. Here, we review recent advances in utilizing neutron imaging to visualize and quantify root water uptake, hydraulic redistribution in roots and soil, and root hydraulic properties of different plant species. Under uniform soil moisture distributions, neutron radiographic studies have shown that water uptake was not uniform along the root and depended on both root type and age. For both tap (e.g., lupine [Lupinus albus L.]) and fibrous (e.g., maize [Zea mays L.]) root systems, water was mainly taken up through lateral roots. In mature maize, the location of water uptake shifted from seminal roots and their laterals to crown/nodal roots and their laterals. Under non-uniform soil moisture distributions, part of the water taken up during the daytime maintained the growth of crown/nodal roots in the upper, drier soil layers. Ultra-fast neutron tomography provides new insights into 3D water movement in soil and roots. We discuss the limitations of using neutron imaging and propose future directions to utilize neutron imaging to advance our understanding of root water uptake and soil-root interactions., (© 2022 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
19. Dry Season Transpiration and Soil Water Dynamics in the Central Amazon.
- Author
-
Spanner GC, Gimenez BO, Wright CL, Menezes VS, Newman BD, Collins AD, Jardine KJ, Negrón-Juárez RI, Lima AJN, Rodrigues JR, Chambers JQ, Higuchi N, and Warren JM
- Abstract
With current observations and future projections of more intense and frequent droughts in the tropics, understanding the impact that extensive dry periods may have on tree and ecosystem-level transpiration and concurrent carbon uptake has become increasingly important. Here, we investigate paired soil and tree water extraction dynamics in an old-growth upland forest in central Amazonia during the 2018 dry season. Tree water use was assessed via radial patterns of sap flow in eight dominant canopy trees, each a different species with a range in diameter, height, and wood density. Paired multi-sensor soil moisture probes used to quantify volumetric water content dynamics and soil water extraction within the upper 100 cm were installed adjacent to six of those trees. To link depth-specific water extraction patterns to root distribution, fine root biomass was assessed through the soil profile to 235 cm. To scale tree water use to the plot level (stand transpiration), basal area was measured for all trees within a 5 m radius around each soil moisture probe. The sensitivity of tree transpiration to reduced precipitation varied by tree, with some increasing and some decreasing in water use during the dry period. Tree-level water use scaled with sapwood area, from 11 to 190 L per day. Stand level water use, based on multiple plots encompassing sap flow and adjacent trees, varied from ∼1.7 to 3.3 mm per day, increasing linearly with plot basal area. Soil water extraction was dependent on root biomass, which was dense at the surface (i.e., 45% in the upper 5 cm) and declined dramatically with depth. As the dry season progressed and the upper soil dried, soil water extraction shifted to deeper levels and model projections suggest that much of the water used during the month-long dry-down could be extracted from the upper 2-3 m. Results indicate variation in rates of soil water extraction across the research area and, temporally, through the soil profile. These results provide key information on whole-tree contributions to transpiration by canopy trees as water availability changes. In addition, information on simultaneous stand level dynamics of soil water extraction that can inform mechanistic models that project tropical forest response to drought., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Spanner, Gimenez, Wright, Menezes, Newman, Collins, Jardine, Negrón-Juárez, Lima, Rodrigues, Chambers, Higuchi and Warren.)
- Published
- 2022
- Full Text
- View/download PDF
20. Quantitative prediction of dynamic HTO migration behavior in the soil and non-negligible evapotranspiration effect.
- Author
-
Nie B, Wu S, Yang D, Chen D, Gu W, Zhou W, Yin J, and Wang D
- Subjects
- Plant Leaves chemistry, Soil, Tritium, Radiation Monitoring, Soil Pollutants, Radioactive
- Abstract
Tritium is mainly produced from nuclear facilities apart from nuclear tests. After being released to the environment, tritium would cause water & food contamination due to its radioactivity and mobility. This study investigated dynamic characteristics of tritiated water (HTO) migration in the soil and evapotranspiration effect based on realistic environmental conditions. The influences of soil types and time-varying environmental factors such as precipitation and evapotranspiration on tritium migration behaviors were specially discussed under normal continuous and accidental short-term release conditions. Radiation dose caused by dynamic tritium evapotranspiration was evaluated. The results show that tritium migration velocity in the soil is much higher than other particles such as cesium due to negligible adsorption of tritium by the soil. Tritium migration in the soil from up to down is attributed to precipitation. On the contrary, evapotranspiration factor would carry tritium movement along the opposite direction. A considerable fraction approximately 55% of tritium deposited in the soil would be reemitted into the air from bare soil and plant leaves due to evapotranspiration effect. Subsequently, the radiation dose caused by second plume due to evapotranspiration effect might be higher than the first plume due to direct release from the nuclear facility under routine discharge., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
21. Root hydraulic phenotypes impacting water uptake in drying soils.
- Author
-
Cai G, Ahmed MA, Abdalla M, and Carminati A
- Subjects
- Desiccation, Phenotype, Plant Roots chemistry, Plant Transpiration, Soil, Water analysis
- Abstract
Soil drying is a limiting factor for crop production worldwide. Yet, it is not clear how soil drying impacts water uptake across different soils, species, and root phenotypes. Here we ask (1) what root phenotypes improve the water use from drying soils? and (2) what root hydraulic properties impact water flow across the soil-plant continuum? The main objective is to propose a hydraulic framework to investigate the interplay between soil and root hydraulic properties on water uptake. We collected highly resolved data on transpiration, leaf and soil water potential across 11 crops and 10 contrasting soil textures. In drying soils, the drop in water potential at the soil-root interface resulted in a rapid decrease in soil hydraulic conductance, especially at higher transpiration rates. The analysis reveals that water uptake was limited by soil within a wide range of soil water potential (-6 to -1000 kPa), depending on both soil textures and root hydraulic phenotypes. We propose that a root phenotype with low root hydraulic conductance, long roots and/or long and dense root hairs postpones soil limitation in drying soils. The consequence of these root phenotypes on crop water use is discussed., (© 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
22. Root System Scale Models Significantly Overestimate Root Water Uptake at Drying Soil Conditions.
- Author
-
Khare D, Selzner T, Leitner D, Vanderborght J, Vereecken H, and Schnepf A
- Abstract
Soil hydraulic conductivity ( k
soil ) near plant roots during water uptake. Coarse soil grid resolutions in root system scale (RSS) models of root water uptake (RWU) generally do not spatially resolve this gradient in drying soils which can lead to a large overestimation of RWU. To quantify this, we consider a benchmark scenario of RWU from drying soil for which a numerical reference solution is available. We analyze this problem using a finite volume scheme and investigate the impact of grid size on the RSS model results. At dry conditions, the cumulative RWU was overestimated by up to 300% for the coarsest soil grid of 4.0 cm and by 30% for the finest soil grid of 0.2 cm, while the computational demand increased from 19 s to 21 h. As an accurate and computationally efficient alternative to the RSS model, we implemented a continuum multi-scale model where we keep a coarse grid resolution for the bulk soil, but in addition, we solve a 1-dimensional radially symmetric soil model at rhizosphere scale around individual root segments. The models at the two scales are coupled in a mass-conservative way. The multi-scale model compares best to the reference solution (-20%) at much lower computational costs of 4 min. Our results demonstrate the need to shift to improved RWU models when simulating dry soil conditions and highlight that results for dry conditions obtained with RSS models of RWU should be interpreted with caution.ψs ) near plant roots during water uptake. Coarse soil grid resolutions in root system scale (RSS) models of root water uptake (RWU) generally do not spatially resolve this gradient in drying soils which can lead to a large overestimation of RWU. To quantify this, we consider a benchmark scenario of RWU from drying soil for which a numerical reference solution is available. We analyze this problem using a finite volume scheme and investigate the impact of grid size on the RSS model results. At dry conditions, the cumulative RWU was overestimated by up to 300% for the coarsest soil grid of 4.0 cm and by 30% for the finest soil grid of 0.2 cm, while the computational demand increased from 19 s to 21 h. As an accurate and computationally efficient alternative to the RSS model, we implemented a continuum multi-scale model where we keep a coarse grid resolution for the bulk soil, but in addition, we solve a 1-dimensional radially symmetric soil model at rhizosphere scale around individual root segments. The models at the two scales are coupled in a mass-conservative way. The multi-scale model compares best to the reference solution (-20%) at much lower computational costs of 4 min. Our results demonstrate the need to shift to improved RWU models when simulating dry soil conditions and highlight that results for dry conditions obtained with RSS models of RWU should be interpreted with caution., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Khare, Selzner, Leitner, Vanderborght, Vereecken and Schnepf.)- Published
- 2022
- Full Text
- View/download PDF
23. Evidence for distinct isotopic compositions of sap and tissue water in tree stems: consequences for plant water source identification.
- Author
-
Barbeta A, Burlett R, Martín-Gómez P, Fréjaville B, Devert N, Wingate L, Domec JC, and Ogée J
- Subjects
- Plant Stems, Soil, Wood, Xylem, Trees, Water
- Abstract
The long-standing hypothesis that the isotopic composition of plant stem water reflects that of source water is being challenged by studies reporting bulk water from woody stems with an isotopic composition that cannot be attributed to any potential water source. The mechanism behind such source-stem water isotopic offsets is still poorly understood. Using a novel technique to extract selectively sap water from xylem conduits, we show that, in cut stems and potted plants, the isotopic composition of sap water reflects that of irrigation water, demonstrating unambiguously that no isotopic fractionation occurs during root water uptake or sap water extraction. By contrast, water in nonconductive xylem tissues is always depleted in deuterium compared with sap water, irrespective of wood anatomy. Previous studies have shown that isotopic heterogeneity also exists in soils at the pore scale in which water adsorbed onto soil particles is more depleted in deuterium than unbound water. Data collected at a riparian forest indicated that sap water matches best unbound soil water from depth below -70 cm, while bulk stem and soil water differ markedly. We conclude that source-stem isotopic offsets can be explained by micrometre-scale heterogeneity in the isotope ratios of water within woody stems and soil micro-pores., (© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.)
- Published
- 2022
- Full Text
- View/download PDF
24. Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: An application for a citrus orchard.
- Author
-
Segovia-Cardozo DA, Franco L, and Provenzano G
- Subjects
- Agricultural Irrigation, Crops, Agricultural, Plant Transpiration, Water, Citrus, Soil
- Abstract
Most perennial crops sensitive to water scarcity, such as citrus, can benefit from efficient water management, which allows for reduced water consumption while increasing crop production on a long-term basis. However, when implementing water-saving strategies, it is necessary to monitor soil and/or plant water status in order to determine crop water demand. A plethora of devices providing indirect measurements of volumetric soil water content, such as the "drill and drop" multi-sensors probes (Sentek, Inc., Stepney, Australia), have been developed over the last decade. The objective of the paper was to analyse time-series of soil water content profiles and meteorological data collected in an adult citrus orchard over three years of field observations (2017-2020) in order to estimate actual crop evapotranspiration and derive crop coefficients. Simultaneous measurements of sap fluxes also allowed for the estimation of the basal crop coefficient, K
cb , used as a control variable. The temporal dynamics of soil water content profiles following rainfall or irrigation events provided information on soil evaporation, root water uptake, and actual crop transpiration. After soil wetting events, in particular, it was possible to recognize patterns of actual crop evapotranspiration similar to those detected with sap flow sensors. The knowledge of actual crop evapotranspiration at the daily time-step, in conjunction with the corresponding reference crop evapotranspiration, allowed for appropriate estimations of the crop coefficient associated with the various development stages. The proposed method provided interesting insights into the dynamics of root water uptake and crop evapotranspiration of the studied citrus orchard, and it represents a promising tool for precise irrigation scheduling in other agroecosystems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
25. Arbuscular Mycorrhiza Symbiosis Enhances Water Status and Soil-Plant Hydraulic Conductance Under Drought.
- Author
-
Abdalla M and Ahmed MA
- Abstract
Recent studies have identified soil drying as a dominant driver of transpiration reduction at the global scale. Although Arbuscular Mycorrhiza Fungi (AMF) are assumed to play a pivotal role in plant response to soil drying, studies investigating the impact of AMF on plant water status and soil-plant hydraulic conductance are lacking. Thus, the main objective of this study was to investigate the influence of AMF on soil-plant conductance and plant water status of tomato under drought. We hypothesized that AMF limit the drop in matric potential across the rhizosphere, especially in drying soil. The underlying mechanism is that AMF extend the effective root radius and hence reduce the water fluxes at the root-soil interface. The follow-up hypothesis is that AMF enhance soil-plant hydraulic conductance and plant water status during soil drying. To test these hypotheses, we measured the relation between transpiration rate, soil and leaf water potential of tomato with reduced mycorrhiza colonization (RMC) and the corresponding wild type (WT). We inoculated the soil of the WT with Rhizophagus irregularis spores to potentially upsurge symbiosis initiation. During soil drying, leaf water potential of the WT did not drop below -0.8MPa during the first 6days after withholding irrigation, while leaf water potential of RMC dropped below -1MPa already after 4days. Furthermore, AMF enhanced the soil-plant hydraulic conductance of the WT during soil drying. In contrast, soil-plant hydraulic conductance of the RMC declined more abruptly as soil dried. We conclude that AMF maintained the hydraulic continuity between root and soil in drying soils, hereby reducing the drop in matric potential at the root-soil interface and enhancing soil-plant hydraulic conductance of tomato under edaphic stress. Future studies will investigate the role of AMF on soil-plant hydraulic conductance and plant water status among diverse plant species growing in contrasting soil textures., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Abdalla and Ahmed.)
- Published
- 2021
- Full Text
- View/download PDF
26. Dew water-uptake pathways in Negev desert plants: a study using stable isotope tracers.
- Author
-
Hill AJ, Dawson TE, Dody A, and Rachmilevitch S
- Subjects
- Biological Transport, Oxygen Isotopes analysis, Plant Leaves chemistry, Soil, Water analysis
- Abstract
Dew is an important water resource for plants in most deserts. The mechanism that allows desert plants to use dew water was studied using an isotopic water tracer approach. Most plants use water directly from the soil; the roots transfer the water to the rest of the plant, where it is required for all metabolic functions. However, many plants can also take up water into their leaves and stems. Examining the dew water uptake pathways in desert plants can lend insight on another all water-use pathways examination. We determined where and how dew water enters plants in the water limited Negev desert. Highly depleted isotopic water was sprayed on three different dominant plant species of the Negev desert-Artemesia sieberi, Salsola inermis and Haloxylon scoparium-and its entry into the plant was followed. Water was sprayed onto the soil only, or on the leaves/stems only (with soil covered to prevent water entry via root uptake). Thereafter, the isotopic composition of water in the roots and stems were measured at various time points. The results show that each plant species used the dew water to a different extent, and we obtained evidence of foliar uptake capacity of dew water that varied depending on the microenvironmental conditions. A. sieberi took up the greatest amount of dew water through both stems and roots, S. inermis took up dew water mainly from the roots, and H. scoparium showed the least dew capture overall.
- Published
- 2021
- Full Text
- View/download PDF
27. An explanation for the isotopic offset between soil and stem water in a temperate tree species.
- Author
-
Barbeta A, Gimeno TE, Clavé L, Fréjaville B, Jones SP, Delvigne C, Wingate L, and Ogée J
- Subjects
- Carbon Isotopes analysis, Oxygen Isotopes analysis, Soil, Water analysis, Fagus, Trees
- Abstract
A growing number of field studies report isotopic offsets between stem water and its potential sources that prevent the unambiguous identification of plant water origin using water isotopes. We explored the causes of this isotopic offset by conducting a controlled experiment on the temperate tree species Fagus sylvatica. We measured δ
2 H and δ18 O of soil and stem water from potted saplings growing on three soil substrates and subjected to two watering regimes. Regardless of substrate, soil and stem water δ2 H were similar only near permanent wilting point. Under moister conditions, stem water δ2 H was 11 ± 3‰ more negative than soil water δ2 H, coherent with field studies. Under drier conditions, stem water δ2 H became progressively more enriched than soil water δ2 H. Although stem water δ18 O broadly reflected that of soil water, soil-stem δ2 H and δ18 O differences were correlated (r = 0.76) and increased with transpiration rates indicated by proxies. Soil-stem isotopic offsets are more likely to be caused by water isotope heterogeneities within the soil pore and stem tissues, which would be masked under drier conditions as a result of evaporative enrichment, than by fractionation under root water uptake. Our results challenge our current understanding of isotopic signals in the soil-plant continuum., (© 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.)- Published
- 2020
- Full Text
- View/download PDF
28. Borehole Equilibration: Testing a New Method to Monitor the Isotopic Composition of Tree Xylem Water in situ .
- Author
-
Marshall JD, Cuntz M, Beyer M, Dubbert M, and Kuehnhammer K
- Abstract
Forest water use has been difficult to quantify. One promising approach is to measure the isotopic composition of plant water, e.g., the transpired water vapor or xylem water. Because different water sources, e.g., groundwater versus shallow soil water, often show different isotopic signatures, isotopes can be used to investigate the depths from which plants take up their water and how this changes over time. Traditionally such measurements have relied on the extraction of wood samples, which provide limited time resolution at great expense, and risk possible artifacts. Utilizing a borehole drilled through a tree's stem, we propose a new method based on the notion that water vapor in a slow-moving airstream approaches isotopic equilibration with the much greater mass of liquid water in the xylem. We present two empirical data sets showing that the method can work in practice. We then present a theoretical model estimating equilibration times and exploring the limits at which the approach will fail. The method provides a simple, cheap, and accurate means of continuously estimating the isotopic composition of the source water for transpiration., (Copyright © 2020 Marshall, Cuntz, Beyer, Dubbert and Kuehnhammer.)
- Published
- 2020
- Full Text
- View/download PDF
29. Investigating the root plasticity response of Centaurea jacea to soil water availability changes from isotopic analysis.
- Author
-
Kühnhammer K, Kübert A, Brüggemann N, Deseano Diaz P, van Dusschoten D, Javaux M, Merz S, Vereecken H, Dubbert M, and Rothfuss Y
- Subjects
- Bayes Theorem, Plant Transpiration, Water, Centaurea, Plant Roots physiology, Soil
- Abstract
Root water uptake is a key ecohydrological process for which a physically based understanding has been developed in the past decades. However, due to methodological constraints, knowledge gaps remain about the plastic response of whole plant root systems to a rapidly changing environment. We designed a laboratory system for nondestructive monitoring of stable isotopic composition in plant transpiration of a herbaceous species (Centaurea jacea) and of soil water across depths, taking advantage of newly developed in situ methods. Daily root water uptake profiles were obtained using a statistical Bayesian multisource mixing model. Fast shifts in the isotopic composition of both soil and transpiration water could be observed with the setup and translated into dynamic and pronounced shifts of the root water uptake profile, even in well watered conditions. The incorporation of plant physiological and soil physical information into statistical modelling improved the model output. A simple exercise of water balance closure underlined the nonunique relationship between root water uptake profile on the one hand, and water content and root distribution profiles on the other, illustrating the continuous adaption of the plant water uptake as a function of its root hydraulic architecture and soil water availability during the experiment., (© 2019 The Authors New Phytologist © 2019 New Phytologist Trust.)
- Published
- 2020
- Full Text
- View/download PDF
30. Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake.
- Author
-
Schnepf A, Black CK, Couvreur V, Delory BM, Doussan C, Koch A, Koch T, Javaux M, Landl M, Leitner D, Lobet G, Mai TH, Meunier F, Petrich L, Postma JA, Priesack E, Schmidt V, Vanderborght J, Vereecken H, and Weber M
- Abstract
Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development., (Copyright © 2020 Schnepf, Black, Couvreur, Delory, Doussan, Koch, Koch, Javaux, Landl, Leitner, Lobet, Mai, Meunier, Petrich, Postma, Priesack, Schmidt, Vanderborght, Vereecken and Weber.)
- Published
- 2020
- Full Text
- View/download PDF
31. Modeling the temporal distribution of water, ammonium-N, and nitrate-N in the root zone of wheat using HYDRUS-2D under conservation agriculture.
- Author
-
Shafeeq PM, Aggarwal P, Krishnan P, Rai V, Pramanik P, and Das TK
- Subjects
- Nitrogen, Plant Roots, Agriculture methods, Ammonium Compounds analysis, Nitrates analysis, Soil chemistry, Triticum, Water analysis
- Abstract
In the current study, the temporal distribution of both soil water and soil NO
3 -N under several conservation agriculture (CA) practices during the wheat crop growth were characterized by HYDRUS-2D model. Treatments comprised of conventional tillage (CT), permanent broad beds (PBB), zero tillage (ZT), PBB with residue (PBB+R) and ZT with residue (ZT+R). Hydraulic inputs of the model, comprising the measured value of Kfs , α and n, obtained as the output of Rosetta Lite model were optimized through inverse modeling. Model predicted the daily change in soil water content (SWC) of the profile during the simulated period (62-91 DAS) with good accuracy (R2 = 0.75; root mean squared error (RMSE) = 0.038). In general, soil water balance simulated from the model showed 50% lower cumulative drainage, 50% higher cumulative transpiration along with higher soil water retention, in PBB+R than CT. Reported values of the first-order rate constants, signify nitrification of urea to NH4 -N (μa ) (day-1 ) nitrification of NH4 -N to NO3 -N (μn ) (day-1 ) and the distribution coefficient of urea (Kd -in cm3 mg-1 ) were optimized through inverse modeling. Later they were used as solute transport reaction input parameters of the model, to predict the daily change in NO3 -N of the profile with better accuracy (R2 = 0.83; RMSE = 4.62). Since NH4 -N disappears fast, it could not be measured frequently. Therefore, not enough data could be generated for their use in the calibration and validation of the model. Results of simulation of daily NO3 -N concentration indicated a higher concentration of NO3 -N in the surface layer and its leaching losses beyond the root zone were relatively lesser in PBB+R, than CT, which resulted in less contamination of the belowground water. Thus, the study clearly recommended PBB+R to be adopted for wheat cultivation in maize-wheat cropping system, as it enhances the water and nitrogen availability in the root zone and reduce their losses beyond the root zone.- Published
- 2020
- Full Text
- View/download PDF
32. Deep soil water extraction by apple sequesters organic carbon via root biomass rather than altering soil organic carbon content.
- Author
-
Li H, Si B, Ma X, and Wu P
- Subjects
- Agriculture, Biomass, Carbon, Ecosystem, Plant Roots, Soil chemistry, Water, Carbon Sequestration, Malus physiology
- Abstract
Soil water and carbon stocks have always been research hotspots. However, the interaction between soil water and carbon in deep soil (>1 m below surface) remains poorly understood. The present study used the chronosequence approach to investigate water extraction and carbon input by roots to a depth of 25.2 m in 8-, 11-, 15-, 18-, and 22-year-old afforested apple (Malus pumila Mill.) orchard stands in a sub-humid region of the Chinese Loess Plateau. Three long-term cultivated farmlands were used as a benchmark of soil water and carbon status before land use change. Measurements showed that the apple trees accessed deep soil water reserves by growing deep roots, with the resulting desiccated soil possibly stimulating apple trees to extend their roots into deeper, moister soil. Accordingly, soil water content in the root zone decreased progressively with increasing stand age. For example, the roots of apple trees in the 22-year-old stand extended to 23.2 m below the soil surface and extracted 1530 ± 43 mm deep soil water. Consequently, carbon input from root biomass correlated well with the water storage loss in deep soil (R
2 = 0.88). Deep roots accounted for 49 ± 22% of the total root biomass and contributed 0.44 ± 0.15 Mg C ha-1 yr-1 to the deep soil. However, the roots of apple trees did not significantly change the soil organic carbon content in the root zone possibly because there was limited root biomass per unit soil depth and because soil water content in the root zone gradually decreased. These findings demonstrate the importance of deep soil in regulating water and carbon cycles, advancing our understanding of interactions among water, roots, and carbon in this zone., (Copyright © 2019 Elsevier B.V. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
33. Functional-structural root-system model validation using a soil MRI experiment.
- Author
-
Koch A, Meunier F, Vanderborght J, Garré S, Pohlmeier A, and Javaux M
- Subjects
- Models, Biological, Soil, Botany methods, Magnetic Resonance Imaging, Plant Roots metabolism, Water metabolism
- Abstract
For the first time, a functional-structural root-system model is validated by combining a tracer experiment monitored with magnetic resonance imaging and three-dimensional modeling of water and solute transport., (© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Published
- 2019
- Full Text
- View/download PDF
34. A pool-weighted perspective on the two-water-worlds hypothesis.
- Author
-
Dubbert M, Caldeira MC, Dubbert D, and Werner C
- Subjects
- Biological Transport, Cistus metabolism, Deuterium metabolism, Ecosystem, Groundwater chemistry, Oxygen Isotopes metabolism, Plant Roots metabolism, Quercus metabolism, Rain, Seasons, Soil chemistry, Vapor Pressure, Xylem metabolism, Models, Biological, Water metabolism
- Abstract
The 'two-water-worlds' hypothesis is based on stable isotope differences in stream, soil and xylem waters in dual isotope space. It postulates no connectivity between bound and mobile soil waters, and preferential plant water uptake of bound soil water sources. We tested the pool-weighted impact of isotopically distinct water pools for hydrological cycling, the influence of species-specific water use and the degree of ecohydrological separation. We combined stable isotope analysis (δ
18 O and δ2 H) of ecosystem water pools of precipitation, groundwater, soil and xylem water of two distinct species (Quercus suber, Cistus ladanifer) with observations of soil water contents and sap flow. Shallow soil water was evaporatively enriched during dry-down periods, but enrichment faded strongly with depth and upon precipitation events. Despite clearly distinct water sources and water-use strategies, both species displayed a highly opportunistic pattern of root water uptake. Here we offer an alternative explanation, showing that the isotopic differences between soil and plant water vs groundwater can be fully explained by spatio-temporal dynamics. Pool weighting the contribution of evaporatively enriched soil water reveals only minor annual impacts of these sources to ecosystem water cycling (c. 11% of bulk soil water and c. 14% of transpired water)., (© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.)- Published
- 2019
- Full Text
- View/download PDF
35. Whole root system water conductance responds to both axial and radial traits and network topology over natural range of trait variation.
- Author
-
Bouda M, Brodersen C, and Saiers J
- Subjects
- Aquaporins antagonists & inhibitors, Aquaporins physiology, Biological Transport physiology, Lupinus metabolism, Plant Roots anatomy & histology, Quercus metabolism, Triticum metabolism, Xylem metabolism, Models, Biological, Plant Roots metabolism, Water metabolism
- Abstract
Current theory and supporting research suggests that radial transport is the most limiting factor to root water uptake, raising the question whether only absorbing root length and radial conductivity matter to water uptake. Here, we extended the porous pipe analytical model of root water uptake to entire root networks in 3D and analysed the relative importance of axial and radial characteristics to total uptake over parameter ranges reported in the literature. We found that network conductance can be more sensitive to axial than radial conductance of absorbing roots. When axial transport limits uptake, more dichotomous topology, especially towards the base of the network, increases water uptake efficiency, while the effect of root length is reduced. Whole root system conductance was sensitive to radial transport and length in model lupin (Lupinus angustifolius L.), but to axial transport and topology in wheat (Triticum aestivum L.), suggesting the root habit niche space of monocots may be constrained by their loss of secondary growth. A deep tap root calibrated to oak (Quercus fusiformis J. Buchholz) hydraulic parameters required 15 times more xylem volume to transport comparable amounts of water once recalibrated to parameters from juniper (Juniperus ashei Small 1901), showing that anatomical constraints on axial conductance can lead to significant trade-offs in woody roots as well. Root system water uptake responds to axial transport and can be limited by it in a biologically meaningful way., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
36. Arbuscular Mycorrhiza Alleviates Restrictions to Substrate Water Flow and Delays Transpiration Limitation to Stronger Drought in Tomato.
- Author
-
Bitterlich M, Sandmann M, and Graefe J
- Abstract
Arbuscular mycorrhizal fungi (AMF) proliferate in soil pores, on the surface of soil particles and affect soil structure. Although modifications in substrate moisture retention depend on structure and could influence plant water extraction, mycorrhizal impacts on water retention and hydraulic conductivity were rarely quantified. Hence, we asked whether inoculation with AMF affects substrate water retention, water transport properties and at which drought intensity those factors become limiting for plant transpiration. Solanum lycopersicum plants were set up in the glasshouse, inoculated or not with Funneliformis mosseae , and grown for 35 days under ample water supply. After mycorrhizal establishment, we harvested three sets of plants, one before (36 days after inoculation) and the second (day 42) and third (day 47) within a sequential drying episode. Sampling cores were introduced into pots before planting. After harvest, moisture retention and substrate conductivity properties were assessed and water retention and hydraulic conductivity models were fitted. A root water uptake model was adopted in order to identify the critical substrate moisture that induces soil derived transpiration limitation. Neither substrate porosity nor saturated water contents were affected by inoculation, but both declined after substrates dried. Drying also caused a decline in pot water capacity and hydraulic conductivity. Plant available water contents under wet (pF 1.8-4.2) and dry (pF 2.5-4.2) conditions increased in mycorrhizal substrates and were conserved after drying. Substrate hydraulic conductivity was higher in mycorrhizal pots before and during drought exposure. After withholding water from pots, higher substrate drying rates and lower substrate water potentials were found in mycorrhizal substrates. Mycorrhiza neither affected leaf area nor root weight or length. Consistently with higher substrate drying rates, AMF restored the plant hydraulic status, and increased plant transpiration when soil moisture declined. The water potential at the root surface and the resistance to water flow in the rhizosphere were restored in mycorrhizal pots although the bulk substrate dried more. Finally, substrates colonized by AMF can be more desiccated before substrate water flux quantitatively limits transpiration. This is most pronounced under high transpiration demands and complies with a difference of over 1,000 hPa in substrate water potential.
- Published
- 2018
- Full Text
- View/download PDF
37. Towards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits.
- Author
-
Meunier F, Couvreur V, Draye X, Vanderborght J, and Javaux M
- Subjects
- Biological Transport, Mathematical Concepts, Plant Roots anatomy & histology, Plant Transpiration physiology, Rheology, Soil chemistry, Water metabolism, Zea mays anatomy & histology, Zea mays physiology, Models, Biological, Plant Roots physiology
- Abstract
Predicting root water uptake and plant transpiration is crucial for managing plant irrigation and developing drought-tolerant root system ideotypes (i.e. ideal root systems). Today, three-dimensional structural functional models exist, which allows solving the water flow equation in the soil and in the root systems under transient conditions and in heterogeneous soils. Yet, these models rely on the full representation of the three-dimensional distribution of the root hydraulic properties, which is not always easy to access. Recently, new models able to represent this complex system without the full knowledge of the plant 3D hydraulic architecture and with a limited number of parameters have been developed. However, the estimation of the macroscopic parameters a priori still requires a numerical model and the knowledge of the full three-dimensional hydraulic architecture. The objective of this study is to provide analytical mathematical models to estimate the values of these parameters as a function of local plant general features, like the distance between laterals, the number of primaries or the ratio of radial to axial root conductances. Such functions would allow one to characterize the behaviour of a root system (as characterized by its macroscopic parameters) directly from averaged plant root traits, thereby opening new possibilities for developing quantitative ideotypes, by linking plant scale parameters to mean functional or structural properties. With its simple form, the proposed model offers the chance to perform sensitivity and optimization analyses as presented in this study.
- Published
- 2017
- Full Text
- View/download PDF
38. Root hairs enable high transpiration rates in drying soils.
- Author
-
Carminati A, Passioura JB, Zarebanadkouki M, Ahmed MA, Ryan PR, Watt M, and Delhaize E
- Subjects
- Hordeum genetics, Mutation, Water metabolism, Xylem metabolism, Hordeum physiology, Plant Roots physiology, Plant Transpiration physiology, Soil chemistry
- Abstract
Do root hairs help roots take up water from the soil? Despite the well-documented role of root hairs in phosphate uptake, their role in water extraction is controversial. We grew barley (Hordeum vulgare cv Pallas) and its root-hairless mutant brb in a root pressure chamber, whereby the transpiration rate could be varied whilst monitoring the suction in the xylem. The method provides accurate measurements of the dynamic relationship between the transpiration rate and xylem suction. The relationship between the transpiration rate and xylem suction was linear in wet soils and did not differ between genotypes. When the soil dried, the xylem suction increased rapidly and non-linearly at high transpiration rates. This response was much greater with the brb mutant, implying a reduced capacity to take up water. We conclude that root hairs facilitate the uptake of water by substantially reducing the drop in matric potential at the interface between root and soil in rapidly transpiring plants. The experiments also reinforce earlier observations that there is a marked hysteresis in the suction in the xylem when the transpiration rate is rising compared with when it is falling, and possible reasons for this behavior are discussed., (© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.)
- Published
- 2017
- Full Text
- View/download PDF
39. The effect of plant water storage on water fluxes within the coupled soil-plant system.
- Author
-
Huang CW, Domec JC, Ward EJ, Duman T, Manoli G, Parolari AJ, and Katul GG
- Subjects
- Carbon metabolism, Models, Biological, Plant Roots physiology, Plant Stomata physiology, Plant Transpiration physiology, Xylem physiology, Soil chemistry, Water metabolism
- Abstract
In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress., (© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.)
- Published
- 2017
- Full Text
- View/download PDF
40. Estimation of the hydraulic conductivities of lupine roots by inverse modelling of high-resolution measurements of root water uptake.
- Author
-
Zarebanadkouki M, Meunier F, Couvreur V, Cesar J, Javaux M, and Carminati A
- Abstract
Background and Aims Radial and axial hydraulic conductivities are key parameters for proper understanding and modelling of root water uptake. Despite their importance, there is limited experimental information on how the radial and axial hydraulic conductivities vary along roots growing in soil. Here, a new approach was introduced to estimate inversely the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. Methods A three-dimensional model of root water uptake was used to reproduce the measured profile of root water uptake along roots of lupine plant grown in soil. The profile of fluxes was measured using a neutron radiography technique combined with injection of deuterated water as tracer. The aim was to estimate inversely the profiles of the radial and axial hydraulic conductivities along the roots. Key Results The profile of hydraulic conductivities along the taproot and the lateral roots of lupines was calculated using three flexible scenarios. For all scenarios, it was found that the radial hydraulic conductivity increases towards the root tips, while the axial conductivity decreases. Additionally, it was found that in soil with uniform water content: (1) lateral roots were the main location of root water uptake; (2) water uptake by laterals decreased towards the root tips due to the dissipation of water potential along the root; and (3) water uptake by the taproot was higher in the distal segments and was negligible in the proximal parts, which had a low radial conductivity. Conclusions The proposed approach allows the estimation of the root hydraulic properties of plants growing in soil. This information can be used in an advanced model of water uptake to predict the water uptake of different root types or different root architectures under varying soil conditions., (© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2016
- Full Text
- View/download PDF
41. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments.
- Author
-
Ma Y and Song X
- Abstract
Fertilization and water both affect root water uptake in the nutrient and water cycle of the Soil-Plant-Atmosphere-Continuum (SPAC). In this study, dual stable isotopes (D and (18)O) were used to determine seasonal variations in water uptake patterns of summer maize under different fertilization treatments in Beijing, China during 2013-2014. The contributions of soil water at different depths to water uptake were quantified by the MixSIAR Bayesian mixing model. Water uptake was mainly sourced from soil water in the 0-20cm depth at the seeding (67.7%), jointing (60.5%), tasseling (47.5%), dough (41.4%), and harvest (43.9%) stages, and the 20-50cm depth at the milk stage (32.8%). Different levels of fertilization application led to considerable differences in the proportional contribution of soil water at 0-20cm (6.0-58.5%) and 20-50cm (6.1-26.3%). There was little difference of contributions in the deep layers (50-200cm) among treatments in 2013, whereas differences were observed in 50-90cm at the milk stage and 50-200cm at the dough stage during 2014. The main water uptake depth was concentrated in the upper soil layers (0-50cm) during the wet season (2013), whereas a seasonal drought in 2014 promoted the contribution of soil water in deep layers. The contribution of soil water was significantly and positively correlated with the proportions of root length (r=0.753, p<0.01). The changes of soil water distribution were consistent with the seasonal variation in water uptake patterns. The present study identified water sources for summer maize under varying fertilization treatments and provided scientific implications for fertilization and irrigation management., (Copyright © 2016 Elsevier B.V. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
42. Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations.
- Author
-
Koebernick N, Huber K, Kerkhofs E, Vanderborght J, Javaux M, Vereecken H, and Vetterlein D
- Abstract
Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth.
- Published
- 2015
- Full Text
- View/download PDF
43. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.
- Author
-
Puértolas J, Conesa MR, Ballester C, and Dodd IC
- Subjects
- Analysis of Variance, Plant Leaves physiology, Abscisic Acid metabolism, Desiccation, Humidity, Plant Roots metabolism, Signal Transduction, Soil, Solanum tuberosum physiology
- Abstract
Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction., (© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Published
- 2015
- Full Text
- View/download PDF
44. Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil.
- Author
-
Zarebanadkouki M, Kim YX, and Carminati A
- Subjects
- Biological Transport, Deuterium Oxide metabolism, Diffusion, Lupinus cytology, Models, Biological, Plant Roots cytology, Plant Roots physiology, Lupinus growth & development, Lupinus physiology, Neutron Diffraction, Plant Transpiration physiology, Soil, Water physiology
- Abstract
Where and how fast does water flow from soil into roots? The answer to this question requires direct and in situ measurement of local flow of water into roots of transpiring plants growing in soil. We used neutron radiography to trace the transport of deuterated water (D₂O) in lupin (Lupinus albus) roots. Lupins were grown in aluminum containers (30 × 25 × 1 cm) filled with sandy soil. D₂O was injected in different soil regions and its transport in soil and roots was monitored by neutron radiography. The transport of water into roots was then quantified using a convection-diffusion model of D₂O transport into roots. The results showed that water uptake was not uniform along roots. Water uptake was higher in the upper soil layers than in the lower ones. Along an individual root, the radial flux was higher in the proximal segments than in the distal segments. In lupins, most of the water uptake occurred in lateral roots. The function of the taproot was to collect water from laterals and transport it to the shoot. This function is ensured by a low radial conductivity and a high axial conductivity. Lupin root architecture seems well designed to take up water from deep soil layers., (© 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.)
- Published
- 2013
- Full Text
- View/download PDF
45. Rhizosphere wettability decreases with root age: a problem or a strategy to increase water uptake of young roots?
- Author
-
Carminati A
- Abstract
As plant roots take up water and the soil dries, water depletion is expected to occur in the vicinity of roots, the so called rhizosphere. However, recent experiments showed that the rhizosphere of lupines was wetter than the bulk soil during the drying period. Surprisingly, the rhizosphere remained temporarily dry after irrigation. Such water dynamics in the rhizosphere can be explained by the drying/wetting dynamics of mucilage exuded by roots. The capacity of mucilage to hold large volumes of water at negative water potential may favor root water uptake. However, mucilage hydrophobicity after drying may temporarily limit the local water uptake after irrigation. The effects of such rhizosphere dynamics are not yet understood. In particular, it is not known how the rhizosphere dynamics vary along roots and as a function of soil water content. My hypothesis was that the rewetting rate of the rhizosphere is primarily function of root age. Neutron radiography was used to monitor how the rhizosphere water dynamics vary along the root systems of lupines during drying/wetting cycles of different duration. The radiographs showed a fast and almost immediate rewetting of the rhizosphere of the distal root segments, in contrast to a slow rewetting of the rhizosphere of the proximal segments. The rewetting rate of the rhizosphere was not function of the water content before irrigation, but it was function of time. It is concluded that rhizosphere hydrophobicity is not uniform along roots, but it covers only the older and proximal root segments, while the young root segments are hydraulically well-connected to the soil. I included these rhizosphere dynamics in a microscopic model of root water uptake. In the model, the relation between water content and water potential in the rhizosphere is not unique and it varies over time, and the rewetting rate of the rhizosphere decreases with time. The rhisosphere variability seems an optimal adaptation strategy to increase the water uptake of young root segments, which possibly reached new available water, and partly disconnect the old root segments from the already depleted soil.
- Published
- 2013
- Full Text
- View/download PDF
46. Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources.
- Author
-
Carminati A and Vetterlein D
- Subjects
- Air, Biological Transport, Hydrophobic and Hydrophilic Interactions, Plant Mucilage chemistry, Plant Roots chemistry, Plants chemistry, Water analysis, Plant Mucilage metabolism, Plant Roots metabolism, Plants metabolism, Rhizosphere, Soil chemistry, Water metabolism
- Abstract
Background: It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age., Scope: We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water., Outlook: This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.
- Published
- 2013
- Full Text
- View/download PDF
47. Root-soil contact for the desert succulent Agave deserti in wet and drying soil.
- Author
-
North GB and Nobel PS
- Abstract
To investigate the extent and size of root-soil air gaps that develop during soil drying, resin casts of roots of the desert succulent Agave deserti Engelm. were made in situ for container-grown plants and in the field. Plants that were draughted in containers for 7 and 14 d had 24 and 34% root shrinkage, respectively, leading to root-soil air gaps that would reduce the hydraulic conductivity at the root-soil interface by a factor of about 5. When containers were vibrated during drought, root-soil air gaps were greatly diminished, and the predicted conductivity at the interface was similar to that of the control (moist soil). For plants in the field (4 and 6 wk after the last rainfall), root shrinkage was greater than for container-grown plants, but root-soil contact on the root periphery was greater, which led to a higher predicted hydraulic conductivity at the root-soil interface. To test the hypothesis that root-soil air gaps would help to limit water efflux from roots in drying soil, the water potentials of the soil, root, and shoot of plants from vibrated containers (with gaps eliminated or reduced) and non-vibrated containers were compared. The soil water potential was lower for vibrated containers after 14 d of drought, suggesting more rapid depletion of soil water due to better root-soil contact, and the root water potential was lower as well, suggesting greater water loss by roots in the absence of root-soil air gaps. Thus, air gaps could benefit A. deserti by helping to maintain a higher root water potential in the early stages of drought and later by limiting root water loss at the root-soil interface when the water potential exceeds that of the soil.
- Published
- 1997
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.