1. Antibiotic-mediated selection of randomly mutagenized and cytokine-expressing oncolytic viruses.
- Author
-
Rezaei R, Boulton S, Ahmadi M, Petryk J, Da Silva M, Kooshki Zamani N, Singaravelu R, St-Laurent G, Daniel L, Sadeghipour A, Pelin A, Poutou J, Munoz Zuniga AI, Choy C, Gilchrist VH, Khalid Z, Austin B, Onsu KA, Marius R, Ameli Z, Mohammadi F, Mancinelli V, Wang E, Nik-Akhtar A, Alwithenani A, Panahi Arasi F, Ferguson SSG, Hobman TC, Alain T, Tai LH, Ilkow CS, Diallo JS, Bell JC, and Azad T
- Abstract
Optimization of oncolytic viruses for therapeutic applications requires the strategic removal or mutagenesis of virulence genes alongside the insertion of transgenes that enhance viral replication, spread and immunogenicity. However, the complexity of many viral genomes and the labour-intensive nature of methods for the generation and isolation of recombinant viruses have hindered the development of therapeutic oncolytic viruses. Here we report an iterative strategy that exploits the preferential susceptibility of viruses to certain antibiotics to accelerate the engineering of the genomes of oncolytic viruses for the insertion of immunomodulatory cytokine transgenes, and the identification of dispensable genes with regard to replication of the recombinant oncolytic viruses in tumour cells. We applied the strategy by leveraging insertional mutagenesis via the Sleeping Beauty transposon system, combined with long-read nanopore sequencing, to generate libraries of herpes simplex virus type 1 and vaccinia virus, identifying stable transgene insertion sites and gene deletions that enhance the safety and efficacy of the viruses., Competing Interests: Competing interests: The authors declare no competing interests., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2024
- Full Text
- View/download PDF