1. Ionized copolyesters with pH-responsive degradability: Accelerated degradation in specific environments.
- Author
-
Li X, Zheng WZ, Xu PY, Zhang ZY, Lu B, Huang D, Zhen ZC, Ji JH, and Wang GX
- Subjects
- Hydrogen-Ion Concentration, Biodegradation, Environmental, Biodegradable Plastics chemistry, Water Pollutants, Chemical chemistry, Polyesters chemistry
- Abstract
The development of environmentally responsive biodegradable polymers is a promising solution for balancing the stability and degradability of biodegradable plastics. In this study, a commercial biodegradable polyester, poly(butylene adipate-co-butylene terephthalate) (PBAT), was used as the substrate and was synthetically modified with a small amount of anionic sodium 1-3-isophthalate-5-sulfonate (SIPA) to obtain the ionized random poly(butylene adipate-co-butylene terephthalate-co-butylene 5-sodiosulfoisophthalate) (PBATS). The introduction of the sodium sulfonate ionic group enhanced the mechanical and heat-resistant properties of the material, while significantly improving the hydrophilicity and water absorption of the copolyesters of PBATSs and endowing them with special pH-responsive degradation properties. Compared with PBAT, PBATS copolyesters could accelerate degradation in acidic or alkaline buffer solutions and natural seawater, while degradation was inhibited in neutral buffer solutions at pH 7.2. Degradation experiments in simulated gastric, intestinal, and body fluids revealed that the copolyester showed specific and rapid degradation in acidic gastric fluids. This environmentally-responsive degradable material greatly expands the special applications of biodegradable polyesters in the fields of environmental remediation and medical applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF