1. A comprehensive physiological and -Omic analysis of trypsin-mediated protection of green pepper fruits from chilling injury.
- Author
-
Zhao K, Wang X, Yue X, Lv J, Xu X, Lu H, Zuo J, Xu X, Chen B, Yuan S, and Wang Q
- Subjects
- Food Storage, Food Preservation methods, Gene Expression Regulation, Plant, Metabolomics, Capsicum genetics, Capsicum chemistry, Capsicum metabolism, Capsicum growth & development, Fruit chemistry, Fruit metabolism, Fruit genetics, Cold Temperature, Plant Proteins genetics, Plant Proteins metabolism, Trypsin metabolism, Trypsin genetics, Trypsin chemistry
- Abstract
Chilling injury (CI) in green pepper fruits during low-temperature storage causes a significant decline in quality. The present study utilized physiological, transcriptomic, and metabolomic analyses to idneitfy the mechanisms by which trypsin mitigates CI in green peppers stored at 4 °C for 8 days, followed by 3 days of shelf life. Results indicated that the trypsin treatment significantly reduced electrolyte leakage and the CI index in peppers, effectively extending their shelf life and preserving postharvest quality. After 4 days of storage, comparative -omic analyses identified 2514 differentially expressed genes (DEGs) and 397 differentially abundant metabolites (DAMs) between trypsin-treated and control peppers. The trypsin treatment induced changes in sugar metabolism, modulating the expression of HK, SUS, INV, and GLGC, which affected the abundance of metabolites such as CDP-glucose and α-D-p-glucose. Trypsin also enhanced carotenoid metabolism, altering the abundance of rhodopinal glucoside, 1'-hydroxyl-γ-carotene glucoside, and farnesyl 1-PP, and influencing the expression of PDS, CRTH, CRTB, and LUT5. Notably, the trypsin treatment activated the mitogen-activated protein kinase (MAPK) pathway that plays an integral role in the signal transduction of abiotic stress. Differential expression of FLS2, ELF18, PTO, PR1, PTI5, WPKY, MEKK1, and MPK6 genes in the MAPK pathway was observed, which was correlated with CI mitigation in green peppers during cold storage. In conclusion, trypsin is an effective treatment for reducing CI in green peppers during cold storage. The present study provides valuable insights into its physiological and molecular impact on green pepper fruit., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF