Non-thermal plasma (NTP) is a promising biomedical tool for application to wound healing. However, there is limited scientific evidence that confirms its efficacy to inhibit scar formation. This study aims to investigate the role of non-thermal plasma in scar formation. Two full-thickness dorsal cutaneous wounds of rats were treated with either a non-thermal helium plasma jet or helium. It was determined that the non-thermal plasma jet accelerated the wound healing process from 5 days after surgery (day 5: 41.27% ± 2.351 vs 54.7% ± 5.314, p < 0.05; day 7: 56.05% ± 1.881 vs 75.28% ± 3.914, p < 0.01; day 14: 89.85% ± 2.991 vs 98.07% ± 0.839, p < 0.05). The width of the scars for the NTP group was narrower than those of control group (4.607 ± 0.416 mm vs 3.260 ± 0.333 mm, p < 0.05). In addition, a lower level of TGF-β1, p-Smad2 and p-Smad3 were detected in the NTP treated wounds (p < 0.05, p < 0.01 and p < 0.01). As expected, α-SMA was also significantly decreased in the NTP treatment group (p < 0.01). Moreover, the expression of type I collagen and the proportion of type I to III collagen were lower in the NTP group (p < 0.05). The results of the study suggest that NTP may play a potential role in scar formation by inhibiting the TGF β1 signal pathway and reducing the levels of α-SMA and type I collagen, and may have clinical utility in the future.