1. The role of micro-structures in the aqueous phase of emulsion in lipid oxidation process.
- Author
-
Wang X, Chen H, Xu Y, and Deng Q
- Subjects
- Juglans chemistry, Plant Oils chemistry, Phospholipids chemistry, Lipid Peroxides chemistry, Lipids chemistry, Water chemistry, Malondialdehyde chemistry, Emulsions chemistry, Oxidation-Reduction
- Abstract
The instability of emulsions depended on participation of many physical structures in the emulsion. The walnut oil emulsion stabilized by sunflower phospholipid was used to study the potential relationship between the micro-structures in aqueous phase and the overall physicochemical stability of the emulsion. The vesicles and micro- structures (<70 nm, containing trace amounts of triglycerides) was observed by Cryo-TEM in the aqueous phase of emulsions. The content of triglycerides decreased gradually with the instability of the emulsion. The increase of phospholipid concentration inhibited the formation of lipid hydroperoxides (LOOH). However, the degradation of LOOH occurred preferentially in the aqueous micro- structures of high concentrations of phospholipids emulsions. These micro- structures did not affect the distribution of LOOH in the initial emulsion, but affected the distribution of malondialdehyde (MDA). This study provided insights into understanding the oxidative stability of emulsions - highlighting the role of micro- structures in the aqueous phase., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF