1. High-Performance CsPbI 3 Quantum Dot Photodetector with a Vertical Structure Based on the Frenkel-Poole Emission Effect.
- Author
-
Wei H, Ji X, Cao J, He W, Liu H, Pan Z, Song X, Sun Q, Li J, and Wu C
- Abstract
The selection of photoactive materials and the design of device structures are critical to the photoelectronic performance of photodetectors. This study reports on a vertically structured photodetector device with rapid, stable, and efficient photoelectric performance across the UV-visible broadband range based on the Si
++ /SiO2 /Au/single-layer graphene/CsPbI3 quantum dots (QDs) configuration. In this specific device structure, a relatively high conductivity Si++ /SiO2 wafer was used as the substrate, a CsPbI3 QD film with high light absorption was used as the photoactive layer, and a monolayer graphene with high conductivity was inserted between the substrate and the CsPbI3 QD film to form a heterojunction with the QD film. Based on the Frenkel-Poole emission effect arising from the high trap state density within the SiO2 layer, the device exhibited excellent photoelectric performances. Especially at a wavelength of 365 nm, a photocurrent responsivity of 2319 A/W, a specific detectivity of 1.15 × 1014 Jones, an external quantum efficiency of 7883%, and an on/off time of 39/36 ms at a Si++ terminal voltage of -80 V and an optical power density of 84.03 nW/cm2 can be achieved.- Published
- 2024
- Full Text
- View/download PDF