1. The Effect of Donepezil Hydrochloride in the Twitcher Mouse Model of Krabbe Disease.
- Author
-
Papakyriakopoulou P, Valsami G, and Dev KK
- Subjects
- Animals, Mice, Inbred C57BL, Mice, Cholinesterase Inhibitors pharmacology, Cholinesterase Inhibitors therapeutic use, Brain metabolism, Brain drug effects, Brain pathology, Neuroglia drug effects, Neuroglia metabolism, Neuroglia pathology, Behavior, Animal drug effects, Donepezil pharmacology, Donepezil therapeutic use, Disease Models, Animal, Leukodystrophy, Globoid Cell drug therapy, Leukodystrophy, Globoid Cell pathology, Myelin Sheath metabolism, Myelin Sheath drug effects
- Abstract
Krabbe disease (KD) is a rare demyelinating disorder characterized by demyelination caused by mutations in the GALC gene, resulting in toxic accumulation of psychosine. Psychosine has been identified as detrimental to oligodendrocytes, leading to demyelination through diverse hypothesized pathways. Reducing demyelination is essential to maintain neurological function in KD; however, therapeutic interventions are currently limited. Acetylcholinesterase inhibitors (AChEi) are commonly used for symptomatic management of Alzheimer's Disease and are suggested to have potential disease-modifying effects, including regulating myelin state. In particular, donepezil, an AChEi, has demonstrated promising effects in cellular and animal models, including promotion of the expression of myelin-related genes and reduction of glial cell reactivity. This drug also acts as an agonist for sigma-1 receptors (Sig-1R), which are implicated in demyelination diseases. In the context of drug repurposing, here, we demonstrate that administration of donepezil has protective effects in the twitcher mouse model of KD. We provide data showing that donepezil preserves myelin and reduces glial cell reactivity in the brains of twitcher mice. Moreover, donepezil also improves behavioral phenotypes and increases lifespan in twitcher animals. These findings suggest that donepezil, with its dual activity as an AChE inhibitor and Sig-1R agonist, may hold promise as a therapeutic candidate for demyelinating diseases, including KD., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF