1. Cryptotanshinone suppresses tumorigenesis by inhibiting lipogenesis and promoting reactive oxygen species production in KRAS‑activated pancreatic cancer cells.
- Author
-
Terado T, Kim CJ, Ushio A, Minami K, Tambe Y, Kageyama S, Kawauchi A, Tsunoda T, Shirasawa S, Tanaka H, and Inoue H
- Subjects
- Carcinogenesis genetics, Carcinogenesis metabolism, Cell Line, Tumor, Cell Transformation, Neoplastic metabolism, Glutamine metabolism, Humans, Lipids, Lipogenesis, Phenanthrenes, Proto-Oncogene Proteins p21(ras) genetics, Proto-Oncogene Proteins p21(ras) metabolism, Reactive Oxygen Species metabolism, Signal Transduction, Pancreatic Neoplasms, Colorectal Neoplasms pathology, Pancreatic Neoplasms drug therapy, Pancreatic Neoplasms genetics, Pancreatic Neoplasms pathology
- Abstract
Pyruvate dehydrogenase kinase 4 (PDK4) is an important regulator of energy metabolism. Previously, knockdown of PDK4 by specific small interfering RNAs (siRNAs) have been shown to suppress the expression of Κirsten rat sarcoma viral oncogene homolog (KRAS) and the growth of lung and colorectal cancer cells, indicating that PDK4 is an attractive target of cancer therapy by altering energy metabolism. The authors previously reported that a novel small molecule, cryptotanshinone (CPT), which inhibits PDK4 activity, suppresses the in vitro three‑dimensional (3D)‑spheroid formation and in vivo tumorigenesis of KRAS‑activated human pancreatic and colorectal cancer cells. The present study investigated the molecular mechanism of CPT‑induced tumor suppression via alteration of glutamine and lipid metabolism in human pancreatic and colon cancer cell lines with mutant and wild‑type KRAS. The antitumor effect of CPT was more pronounced in the cancer cells containing mutant KRAS compared with those containing wild‑type KRAS. CPT treatment decreased glutamine and lipid metabolism, affected redox regulation and increased reactive oxygen species (ROS) production in the pancreatic cancer cell line MIAPaCa‑2 containing mutant KRAS. Suppression of activated KRAS by specific siRNAs decreased 3D‑spheroid formation, the expression of acetyl‑CoA carboxylase 1 and fatty acid synthase (FASN) and lipid synthesis. The suppression also reduced glutathione‑SH/glutathione disulfide and increased the production of ROS. Knockdown of FASN suppressed lipid synthesis in MIAPaCa‑2 cells, partially promoted ROS production and mildly suppressed 3D‑spheroid formation. These results indicated that CPT reduced tumorigenesis by inhibiting lipid metabolism and promoting ROS production in a mutant KRAS‑dependent manner. This PDK4 inhibitor could serve as a novel therapeutic drug for KRAS‑driven intractable cancers via alteration of cell metabolism.
- Published
- 2022
- Full Text
- View/download PDF