1. Stable Isotope Labelling Reveals Water and Carbon Fluxes in Temperate Tree Saplings Before Budbreak.
- Author
-
Walde MG, Lehmann MM, Gessler A, Vitasse Y, and Diao H
- Subjects
- Seasons, Soil chemistry, Deuterium metabolism, Deuterium analysis, Plant Stems metabolism, Carbon Isotopes analysis, Carbon Cycle, Water metabolism, Trees metabolism, Trees growth & development, Isotope Labeling, Carbon metabolism
- Abstract
Despite considerable experimental effort, the physiological mechanisms governing temperate tree species' water and carbon dynamics before the onset of the growing period remain poorly understood. We applied
2 H-enriched water during winter dormancy to the soil of four potted European tree species. After 8 weeks of chilling, hydrogen isotopes in stem, twig and bud water were measured six times during 2 consecutive weeks of forcing conditions (Experiment 1). Additionally, we pulse-labelled above-ground plant tissues using2 H-enriched water vapour and13 C-enriched CO2 7 days after exposure to forcing conditions to trace atmospheric water and carbon uptake (Experiment 2). Experiment 1 revealed soil water incorporation into the above-ground organs of all species during the chilling phase and significant species-specific differences in water allocation during the forcing conditions, which we attributed to differences in structural traits. Experiment 2 illustrated water vapour incorporation into all above-ground tissue of all species. However, the incorporation of carbon was found for evergreen saplings only. Our results suggest that temperate trees take up and reallocate soil water and absorb atmospheric water to maintain sufficient above-ground tissue hydration during winter. Therefore, our findings provide new insights into the water allocation dynamics of temperate trees during early spring., (© 2024 The Author(s). Plant, Cell & Environment published by John Wiley & Sons Ltd.)- Published
- 2025
- Full Text
- View/download PDF