17 results on '"Tibiofemoral kinematics"'
Search Results
2. Retention of the posterior cruciate ligament stabilizes the medial femoral condyle during kneeling using a tibial insert with ball-in-socket medial conformity.
- Author
-
Harbison G, O'Donnell E, Elorza S, Howell SM, and Hull ML
- Subjects
- Humans, Male, Female, Aged, Middle Aged, Prosthesis Design, Joint Instability surgery, Joint Instability prevention & control, Biomechanical Phenomena, Posterior Cruciate Ligament surgery, Arthroplasty, Replacement, Knee methods, Arthroplasty, Replacement, Knee instrumentation, Femur surgery, Knee Joint surgery, Range of Motion, Articular physiology, Knee Prosthesis, Tibia surgery
- Abstract
Purpose: Resecting the posterior cruciate ligament (PCL) increases posterior laxity and increases the flexion gap more than the extension gap in the native (i.e. healthy) knee. These two effects could lead to significant anterior displacement of the medial femoral condyle in kneeling following total knee arthroplasty even when using a tibial insert with a high degree of medial conformity. Using an insert with ball-in-socket medial conformity and a flat lateral articular surface, the primary purpose was to determine whether the medial femoral condyle remained stable with and without PCL retention during kneeling., Methods: Two groups of patients were studied, one with PCL retention (22 patients) and the other with PCL resection (25 patients), while kneeling at 90º flexion. Following 3D model-to-2D image registration, A-P displacements of both femoral condyles were determined relative to the dwell point of the medial socket., Results: With PCL resection versus PCL retention, the medial femoral condyle was 5.1 ± 3.7 mm versus 0.8 ± 2.1 mm anterior of the dwell point (p < 0.0001). Patient-reported function scores were comparable (p ≥ 0.1610) despite a significantly shorter follow-up of 7.8 ± 0.9 months with PCL retention than 19.6 ± 4.9 months with PCL resection (p < 0.0001). Range of motion was 126 ± 8° versus 122 ± 6° with and without PCL retention, respectively (p = 0.057)., Conclusion: Surgeons that use a highly conforming tibial insert design can stabilize the medial femoral condyle during kneeling by retaining the PCL. In patients with PCL resection, the 9 mm high anterior lip of the insert with ball-in-socket medial conformity was insufficient to prevent significant anterior displacement of the medial femoral condyle when weight-bearing on the anterior tibia., (© 2024. The Author(s) under exclusive licence to SICOT aisbl.)
- Published
- 2024
- Full Text
- View/download PDF
3. A Method to Track 3D Knee Kinematics by Multi-Channel 3D-Tracked A-Mode Ultrasound.
- Author
-
Niu K, Sluiter V, Lan B, Homminga J, Sprengers A, and Verdonschot N
- Subjects
- Humans, Biomechanical Phenomena, Tibia diagnostic imaging, Tibia physiology, Range of Motion, Articular physiology, Femur physiology, Femur diagnostic imaging, Knee physiology, Knee diagnostic imaging, Knee Joint physiology, Knee Joint diagnostic imaging, Ultrasonography methods, Imaging, Three-Dimensional methods
- Abstract
This paper introduces a method for measuring 3D tibiofemoral kinematics using a multi-channel A-mode ultrasound system under dynamic conditions. The proposed system consists of a multi-channel A-mode ultrasound system integrated with a conventional motion capture system (i.e., optical tracking system). This approach allows for the non-invasive and non-radiative quantification of the tibiofemoral joint's six degrees of freedom (DOF). We demonstrated the feasibility and accuracy of this method in the cadaveric experiment. The knee joint's motions were mimicked by manually manipulating the leg through multiple motion cycles from flexion to extension. To measure it, six custom ultrasound holders, equipped with a total of 30 A-mode ultrasound transducers and 18 optical markers, were mounted on various anatomical regions of the lower extremity of the specimen. During experiments, 3D-tracked intra-cortical bone pins were inserted into the femur and tibia to measure the ground truth of tibiofemoral kinematics. The results were compared with the tibiofemoral kinematics derived from the proposed ultrasound system. The results showed an average rotational error of 1.51 ± 1.13° and a translational error of 3.14 ± 1.72 mm for the ultrasound-derived kinematics, compared to the ground truth. In conclusion, this multi-channel A-mode ultrasound system demonstrated a great potential of effectively measuring tibiofemoral kinematics during dynamic motions. Its improved accuracy, nature of non-invasiveness, and lack of radiation exposure make this method a promising alternative to incorporate into gait analysis and prosthetic kinematic measurements later.
- Published
- 2024
- Full Text
- View/download PDF
4. A new tibial insert design with ball-in-socket medial conformity and posterior cruciate ligament retention closely restores native knee tibial rotation after unrestricted kinematic alignment.
- Author
-
Elorza SP, O'Donnell E, Nedopil AJ, Howell SM, and Hull ML
- Abstract
Purpose: In total knee arthroplasty (TKA) with posterior cruciate ligament (PCL) retention, the medial and lateral insert conformity that restores in vivo native (i.e., healthy) knee tibial rotation and high function without causing stiffness is unknown. The purpose was to determine whether a ball-in-socket (B-in-S) medially conforming (MC) and flat lateral insert implanted with unrestricted kinematic alignment (KA) TKA and PCL retention restores tibial rotation to native., Methods: One group of 25 patients underwent unrestricted KA TKA with manual instruments. Another group of 25 patients had native knees. Single-plane fluoroscopy imaged each knee while patients performed step-up and chair rise activities. Following 3D model-to-2D image registration, anterior-posterior (A-P) positions of the femoral condyles were determined. Changes in A-P positions with flexion were used to determine tibial rotation., Results: At maximum flexion, mean tibial rotations of KA TKA knees were comparable to native knees (Step up: 12.3° ± 4.4° vs. 13.1° ± 12.0°, p = 0.783; Chair Rise: 12.7° ± 6.2° vs. 12.6° ± 9.5º, p = 0.941). However, paths of rotation differed in that screw home motion was less evident in KA TKA knees. At 8 months follow-up, the median Forgotten Joint Score was 69 points (range 65 to 85), the median Oxford Knee Score was 43 points (range 40 to 46), and mean knee flexion was 127º ± 8°., Conclusions: The ball-in-socket medial, flat lateral insert and PCL retention implanted with unrestricted KA TKA restored in vivo native knee tibial rotation at maximum flexion for each activity and high function without stiffness. Providing high A-P stability, this implant design might benefit patients desiring to return to demanding work and recreational activities., Level of Evidence: Therapeutic - Level II., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
5. The modification of bone cut angle and joint line obliquity did not change the tibiofemoral kinematics and stability of knee joint after total knee arthroplasty.
- Author
-
Minoda Y, Sugama R, Ohta Y, Ohyama Y, Masuda S, Ikebuchi M, and Nakamura H
- Subjects
- Humans, Biomechanical Phenomena, Computer Simulation, Knee Joint surgery, Tibia surgery, Range of Motion, Articular physiology, Arthroplasty, Replacement, Knee methods, Osteoarthritis, Knee surgery, Knee Prosthesis
- Abstract
Introduction: Previous reports using cadaveric knees and musculoskeletal computer simulation have shown that kinematically aligned (KA) total knee arthroplasty (TKA) provides more natural and physiological tibiofemoral kinematic patterns than mechanically aligned (MA) TKA. These reports suggested that the modification of joint line obliquity improve the knee kinematics. This study aimed to determine whether joint line obliquity change the intraoperative tibiofemoral kinematics in TKA candidates with knee osteoarthritis., Methods: Thirty consecutive knees with varus osteoarthritis that underwent TKA using a navigation system were evaluated. Two types of trial components were prepared: (1) MA TKA model: component trial in which articulating surface was parallel to the bone cut surface (2) KA TKA model: the femoral component trial, which mimicked the KA TKA method of Dossett et al. was designed 3° valgus and 3° internal rotation to the femoral bone cut surface, and the tibial component trial was designed 3° varus to the tibial bone cut surface. These two trials were set on the same knees during the operation, and the tibiofemoral rotational kinematics and varus-valgus laxity were measured from 0° to 120° of knee flexion using a navigation system., Results: The joint gap was 20 ± 2 mm and 3° ± 1° varus in extension and 20 ± 2 mm and 3° ± 1°varus in flexion. The differences in femoral component rotation between KA TKA and MA TKA were not statistically significant for any knee flexion angle. The differences in varus-valgus laxity between KA TKA and MA TKA were also not statistically significant for any knee flexion angle., Conclusion: Although the degree of joint line obliquity varies widely in various KA TKA methods, this study, which mimicked the method of Dossett et al. showed that the modification of joint line obliquity did not change the tibiofemoral kinematics and stability of the knee joint in TKA candidates with knee osteoarthritis., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
6. Posterior cruciate ligament retention with medial ball-in-socket conformity promotes internal tibial rotation and knee flexion while providing high clinical outcome scores.
- Author
-
Pacheco Elorza S, O'Donnell E, Delman C, Howell SM, and Hull ML
- Abstract
Background: Although retaining the posterior cruciate ligament (PCL) is advantageous in unrestricted kinematically aligned TKA, it is often excised with a medial stabilized implant. The primary objectives were to determine whether PCL retention using an insert with ball-in-socket (B-in-S) medial conformity to maximize A-P stability promotes internal tibial rotation and flexion while providing high patient-reported outcome scores., Methods: Two cohorts of 25 patients each were treated with unrestricted kinematically aligned (KA) TKA using a tibial insert with B-in-S medial conformity and a flat lateral articular surface. One cohort retained the PCL; the other had it excised. Patients performed deep knee bend and step-up exercises during fluoroscopic imaging. Following 3D model-to-2D image registration, anterior-posterior (A-P) positions of the femoral condyles and tibial rotation were determined., Results: For deep knee bend, mean internal tibial rotation with PCL retention was significantly greater at maximum flexion (17.7° ± 5.7° versus 10.4° ± 6.5°, p < 0.001) and significantly greater at 30°, 60°, and 90° flexion as well (p ≤ 0.0283). For step-up, mean internal tibial rotation with PCL retention was significantly greater at at 15°, 30°, and 45° flexion (p ≤ 0.0049) but was marginally not significantly greater at 60° (i.e. maximum) flexion (12.3° ± 4.4° versus 10.1° ± 5.4°, p = 0.0794). Mean flexion during active knee flexion with PCL retention was significantly greater (127° ± 8° versus 122° ± 6°, p = 0.0400). Both cohorts had high median Oxford Knee, WOMAC, and Forgotten Joint Scores that were not significantly different (p = 0.0918, 0.1448, and 0.0855, respectively) CONCLUSION: Surgeons that perform unrestricted KA TKA should retain the PCL with an insert that has B-in-S medial conformity, as this maintains extension and flexion gaps while also promoting internal tibial rotation and knee flexion as well as providing high clinical outcome scores., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: S.M. Howell is a paid consultant for Medacta and receives royalties from Medacta. M. L. Hull receives research support from Medacta USA, Inc and the Orthopaedic Research and Education Foundation. He is also on the Editorial Board of the Journal of Biomechanics. Ed O’Donnell holds stock in Novocare., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
7. Posterior rim loading of a low-conforming tibial insert in unrestricted kinematic alignment is caused by rotational alignment of an asymmetric baseplate designed for mechanical alignment.
- Author
-
Hull ML, Nicolet-Petersen S, Saiz A, Delman C, and Howell SM
- Subjects
- Humans, Biomechanical Phenomena, Knee Joint diagnostic imaging, Knee Joint surgery, Femur surgery, Tibia diagnostic imaging, Tibia surgery, Range of Motion, Articular, Arthroplasty, Replacement, Knee methods, Knee Prosthesis
- Abstract
Purpose: Because different targets are used for internal-external rotation, an asymmetric baseplate designed for mechanical alignment may lead to under-coverage and concomitant posterior rim loading in the lateral compartment following unrestricted kinematic alignment (KA) TKA. Recognizing that such loading can lead to premature wear and/or subsidence, our aim was to determine the cause(s) so that occurrence could be remedied. Our hypothesis was that baseplate design features such as asymmetric shape when aligned in KA would consistently contribute to posterior rim loading in the lateral compartment., Methods: Based on analysis of fluoroscopic images of 50 patients performing dynamic, weight bearing deep knee bend and step up and of postoperative CT images, five possible causes were investigated. Causes included internal rotation of the baseplate when positioned in KA; posterior position of the lateral femoral condyle at extension; internal tibial rotation with flexion; internal rotational deviation of the baseplate from the KA rotation target; and posterior slope., Results: The incidence of posterior rim loading was 18% (9 of 50 patients). When positioned in KA, the asymmetric baseplate left 15% versus 10% of the AP depth of the lateral compartment uncovered posteriorly for posterior rim loading and non-posterior rim loading groups, respectively (p = 0.009). The lateral femoral condyle at extension was more posterior by 4 mm for the posterior rim loading group (p = 0.003)., Conclusions: Posterior rim loading in the lateral compartment was caused in part by the asymmetric design of the tibial baseplate designed for mechanical alignment which was internally rotated when positioned in KA thus under-covering a substantial percentage of the posterior lateral tibia. This highlights the need for new, asymmetric baseplates designed to maximize coverage when used in KA., Level of Evidence: III., (© 2022. The Author(s) under exclusive licence to European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA).)
- Published
- 2023
- Full Text
- View/download PDF
8. Ball-in-socket medial conformity with posterior cruciate ligament retention neither limits internal tibial rotation and knee flexion nor lowers clinical outcome scores after unrestricted kinematically aligned total knee arthroplasty.
- Author
-
Elorza SP, O'Donnell E, Nedopil A, Howell SM, and Hull ML
- Subjects
- Humans, Rotation, Knee Joint surgery, Tibia surgery, Range of Motion, Articular, Biomechanical Phenomena, Posterior Cruciate Ligament surgery, Arthroplasty, Replacement, Knee methods, Knee Prosthesis
- Abstract
Purpose: For a new tibial insert design with ball-in-socket (B-in-S) medial conformity (MC), posterior cruciate ligament (PCL) retention, and flat lateral articular surface (B-in-S MC + PCL), this study determined whether internal tibial rotation and knee flexion were limited and clinical outcome scores were lower during weight-bearing activities relative to an insert with intermediate (I) (i.e., less than ball-in-socket) medial conformity (I MC + PCL)., Methods: Twenty-five patients were treated with bilateral unrestricted, caliper-verified kinematic alignment (KA) total knee arthroplasty (TKA) with an I MC + PCL insert and B-in-S MC + PCL insert in opposite knees. Each patient performed weight-bearing deep knee bend, step up, and chair rise under single-plane fluoroscopy. Analysis following 3D model-to-2D image registration determined internal tibial rotation. For each TKA, knee flexion was measured and patients completed clinical outcome scoring questionnaires., Results: Internal tibial rotation did not differ between conformities during chair rise and step up (p = 0.3419 and 0.1030, respectively). During deep knee bend, internal tibial rotation between 90° and maximum flexion was 3° greater in the B-in-S MC + PCL group (18° vs 15°) (p = 0.0290). Mean knee flexion (p = 0.3115) and median Forgotten Joint Score (FJS), Oxford Knee Score (OKS), and Western Ontario and McMasters Universities Arthritis Index (WOMAC) scores (p = 0.2100, 0.2154, and 0.4542, respectively) did not differ between conformities., Conclusion: An insert with ball-in-socket medial conformity, which maximizes anteroposterior (AP) stability, did not limit internal tibial rotation and knee flexion and did not lower patient-reported outcomes when implanted with unrestricted caliper-verified KA and PCL retention. The high AP stability provided by the medial ball-in-socket might interest those surgeons exploring the treatment of the active patient with a desire to return to high-level and athletic activities., (© 2023. The Author(s) under exclusive licence to SICOT aisbl.)
- Published
- 2023
- Full Text
- View/download PDF
9. Joint Coordinate System Using Functional Axes Achieves Clinically Meaningful Kinematics of the Tibiofemoral Joint as Compared to the International Society of Biomechanics Recommendation.
- Author
-
Pourtabib J and Hull ML
- Subjects
- Humans, Biomechanical Phenomena, Tibia physiology, Rotation, Range of Motion, Articular physiology, Knee Joint physiology, Knee physiology
- Abstract
Quantification of clinically meaningful tibiofemoral motions requires a joint coordinate system (JCS) with motions free from kinematic crosstalk errors. The objectives were to use a JCS with literature-backed functional axes (FUNC) and a JCS recommended by the International Society of Biomechanics (ISB) to determine tibiofemoral kinematics of the native (i.e., healthy) knee, determine variability associated with each JCS, and determine whether the FUNC JCS significantly reduced kinematic crosstalk errors compared to the ISB JCS. Based on a kinematic model consisting of a three-cylindric joint chain, the FUNC JCS included functional flexion-extension (F-E) and internal-external (I-E) tibial rotation axes. In contrast, the ISB JCS included F-E and I-E axes defined using anatomic landmarks. Single-plane fluoroscopic images in 13 subjects performing a weighted deep knee bend were analyzed. Tibiofemoral kinematics using the FUNC JCS fell within the physiological range of motion in all six degrees-of-freedom. Internal tibial rotation averaged 13 deg for the FUNC JCS versus 10 deg for the ISB JCS and motions in the other four degrees-of-freedom (collectively termed off-axis motions) were minimal as expected based on biomechanical constraints. Off-axis motions for the ISB JCS were significantly greater; maximum valgus rotation was 4 deg and maximum anterior and distraction translations were 9 mm and 25 mm, respectively, which is not physiologic. Variabilities in off-axis motions were significantly greater with the ISB JCS (p < 0.0002). The FUNC JCS achieved clinically meaningful kinematics by significantly reducing kinematic crosstalk errors and is the more suitable coordinate system for quantifying tibiofemoral motions., (Copyright © 2023 by ASME.)
- Published
- 2023
- Full Text
- View/download PDF
10. Agreement Between Two Methods for Computing the Anterior-Posterior Positions of Native Femoral Condyles Using Three-Dimensional Bone Models With and Without Articular Cartilage and Smoothing.
- Author
-
Simileysky A and Hull ML
- Subjects
- Biomechanical Phenomena, Femur diagnostic imaging, Humans, Knee Joint diagnostic imaging, Range of Motion, Articular, Tibia, Cartilage, Articular diagnostic imaging
- Abstract
Knowledge of anterior-posterior (AP) movement of the femoral condyles on the tibia in healthy knees serves to assess whether an artificial knee restores natural movement. Two methods for identifying AP positions and hence condylar movements include: (1) the flexion facet center (FFC) and (2) the lowest point (LP) methods. The objectives were to determine (1) agreement between the two methods and (2) whether addition of articular cartilage and/or smoothing significantly affects AP positions. Magnetic resonance (MR) images of healthy knees were obtained from eleven subjects, who subsequently performed a dynamic, weight-bearing deep knee bend under fluoroscopy. Four different types of MR models of the distal femur were created: femur, smoothed femur, femur with articular cartilage, and femur with smoothed articular cartilage. In the medial and lateral compartments for the femur with smoothed articular cartilage at 0 deg flexion, mean AP positions of the LPs were 7.7 mm and 5.4 mm more anterior than those of the FFCs, respectively (p < 0.0001, p = 0.0002) and limits of agreement were ±5.5 mm. In the flexion range 30 deg to 90 deg, differences in mean AP positions were 1.5 mm or less and limits of agreement were bounded by ±2.4 mm. Differences in mean AP positions between model types were <1.3 mm for both LPs and FFCs. Since omitting articular cartilage from three-dimensional (3D) models of the femur minimally affected AP positions, faster and less expensive imaging techniques such as computed-tomography (CT) can be used to generate 3D bone models for kinematic analysis. In addition, the LP method is preferred over the FFC method because of its inherent accuracy in indicating the AP position of the instant center of curvature of the femoral condyles which varies with the knee in extension versus flexion., (Copyright © 2022 by ASME.)
- Published
- 2022
- Full Text
- View/download PDF
11. Effect of Time After Injury on Tibiofemoral Joint Kinematics in Anterior Cruciate Ligament-Deficient Knees During Gait.
- Author
-
Li C, Lin Y, Kernkamp WA, Xia H, and Lin Z
- Abstract
Background: Anterior cruciate ligament (ACL) injury can lead to changes in tibiofemoral kinematics during gait, but the detailed short-term kinematic changes after ACL injury are still unknown., Purpose: To measure tibiofemoral kinematics during gait in ACL-deficient (ACLD) knees over time after ACL injury., Study Design: Controlled laboratory study., Methods: The authors categorized 76 patients with unilateral ACLD knees into 4 groups based on the time from injury: <3 months (group 1), 3 to 6 months (group 2), >6 to 12 months (group 3), and >12 months (group 4). The controls were 20 participants with ACL-intact knees. Changes in the knee kinematics and range of motion during gait were compared among ACLD groups and those with ACL-intact knees., Results: Compared with controls, the range of motion of flexion in group 1 was significantly lower (6°; P = .033), and the mean knee flexion was significantly increased (0.7°-3.4°) in groups 1 to 4 (all P ≤ .004). There was more internal tibial rotation (2.9°-4.3°) in group 1 and 2, and more anterior tibial translation (4.3 mm) in group 1 during the stance or swing phases than in controls ( P ≤ .049 for all). The mean internal tibial rotation and anterior tibial translation significantly decreased from group 1 to group 4 ( P < .001 for both). Compared with controls, the mean medial tibial translation was significantly greater (1.2-2.5 mm) in all groups, and more medial tibial translations (2.4-3.7 mm) were observed during the stance phase in groups 1, 3, and 4 ( P ≤ .047 for all)., Conclusion: ACLD knees displayed a motion impairment walking strategy within 3 months, and a higher-flexion walking strategy increased with time after injury. Excessive anterior translation and internal rotation of the tibia tended to return to normal, while excessive medial translation of the tibia increased in ACLD knees after 6 months postinjury. These results may provide new insight into the compensatory mechanisms and risk factors for premature osteoarthritis in ACLD knees., Competing Interests: One or more of the authors has declared the following potential conflict of interest or source of funding: This study was supported by the Key Laboratory of Trauma & Tissue Repair of Tropical Area of China, the Science and Technology Planning Project of Guangdong Province of China (grant No. 2017B030314139), the Natural Science Foundation of Guangdong Province of China (grant No. 2015A030312004), and the Medical Research Foundation of Guangdong Province (No. A2019228). The results of the present study do not constitute endorsement by the American College of Sports Medicine. AOSSM checks author disclosures against the Open Payments Database (OPD). AOSSM has not conducted an independent investigation on the OPD and disclaims any liability or responsibility relating thereto., (© The Author(s) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
12. Coordinate system requirements to determine motions of the tibiofemoral joint free from kinematic crosstalk errors.
- Author
-
Hull ML
- Subjects
- Biomechanical Phenomena, Femur, Humans, Range of Motion, Articular, Knee Joint, Tibia
- Abstract
The relative rigid body motions between the femur and the tibia (termed tibiofemoral kinematics) during flexion activities can provide an objective measure of knee function. Clinically meaningful tibiofemoral kinematics are defined as the six relative rigid body motions expressed in a joint coordinate system where the motions about and along the axes conform to clinical definitions and are free from kinematic crosstalk errors. To obtain clinically meaningful tibiofemoral kinematics, coordinate systems must meet certain requirements which neither have been explicitly stated nor in fact satisfied in any previous publication known to the author. Starting with the joint coordinate system of Grood and Suntay (1983) where motions conform to clinical definitions, the body-fixed axes must correspond to the functional (i.e. actual) axes in flexion-extension and internal-external axial rotation to avoid kinematic crosstalk errors in rotations and both functional axes must be body-fixed throughout knee flexion. To avoid kinematic crosstalk errors in translations, the origins of the femoral and tibial Cartesian coordinate systems, which serve as stepping stones for computing translations, must lie on the functional body-fixed axes. Neither the paper by Grood and Suntay nor the ISB recommendation (Wu et al., 2002) which adopted the joint coordinate system of Grood and Suntay explains these requirements. Indeed meeting these requirements conflicts with the ISB recommendation thus indicating the need for revision to this recommendation. Future studies where clinically meaningful tibiofemoral kinematics are of interest should be guided by the requirements described herein., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier Ltd. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
13. Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait.
- Author
-
Gray HA, Guan S, Young TJ, Dowsey MM, Choong PF, and Pandy MG
- Subjects
- Female, Male, Biomechanical Phenomena, Prospective Studies, Radiography, Humans, Middle Aged, Aged, Gait, Knee Joint diagnostic imaging, Knee Joint physiology, Knee Prosthesis statistics & numerical data, Prosthesis Design statistics & numerical data
- Abstract
Accurate knowledge of knee joint motion is needed to evaluate the effects of implant design on functional performance and component wear. We conducted a randomized controlled trial to measure and compare 6-degree-of-freedom (6-DOF) kinematics and femoral condylar motion of posterior-stabilized (PS), cruciate-retaining (CR), and medial-stabilized (MS) knee implant designs for one cycle of walking. A mobile biplane X-ray imaging system was used to accurately measure 6-DOF tibiofemoral motion as patients implanted with PS (n = 23), CR (n = 25), or MS (n = 26) knees walked over ground at their self-selected speeds. Knee flexion angle did not differ significantly between the three designs. Relative movements of the femoral and tibial components were generally similar for PS and CR with significant differences observed only for anterior tibial drawer. Knee kinematic profiles measured for MS were appreciably different: external rotation and abduction of the tibia were increased while peak-to-peak anterior drawer was significantly reduced for MS compared with PS and CR. Anterior-posterior drawer and medial-lateral shift of the tibia were strongly coupled to internal-external rotation for MS, as was anterior-posterior translation of the contact center in the lateral compartment. MS exhibited the least amount of paradoxical anterior translation of the femur relative to the tibia during knee flexion. The joint center of rotation in the transverse plane was located in the lateral compartment for PS and CR and in the medial compartment for MS. Substantial differences were evident in 6-DOF knee kinematics between the healthy knee and all three prosthetic designs. Overall, knee kinematic profiles observed for MS resemble those of the healthy joint more closely than PS and CR., (© 2020 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.)
- Published
- 2020
- Full Text
- View/download PDF
14. Measuring relative positions and orientations of the tibia with respect to the femur using one-channel 3D-tracked A-mode ultrasound tracking system: A cadaveric study.
- Author
-
Niu K, Homminga J, Sluiter V, Sprengers A, and Verdonschot N
- Subjects
- Biomechanical Phenomena, Cadaver, Feasibility Studies, Femur physiology, Humans, Tibia physiology, Ultrasonography, Femur diagnostic imaging, Materials Testing instrumentation, Mechanical Phenomena, Tibia diagnostic imaging
- Abstract
The purpose of this study is to investigate the technical feasibility of measuring relative positions and orientations of the tibia with respect to the femur in an in-vitro experiment by using a 3D-tracked A-mode ultrasound system and to determine its accuracy of angular and translational measurements. As A-mode ultrasound is capable of detecting bone surface through soft tissue in a non-invasive manner, the combination of a single A-mode ultrasound transducer with an optical motion tracking system provides the possibility for digitizing the 3D locations of bony points at different anatomical regions on the thigh and the shank. After measuring bony points over a large area of both the femur and tibia, the bone models of the femur and tibia that were segmented from CT or MRI images were registered to the corresponding bony points. Then the relative position of the tibia with respect to the femur could be obtained and the angular and translational components could also be measured. A cadaveric experiment was conducted to assess its accuracy compared to the reference measurement obtained by optical markers fixed to intra-cortical bone pins placed in the femur and tibia. The results showed that the ultrasound system could achieve 0.49 ± 0.83°, 0.85 ± 1.86° and 1.85 ± 2.78° (mean ± standard deviation) errors for Flexion-Extension, Adduction-Abduction and External-Internal rotations, respectively, and -2.22 ± 3.62 mm, -2.80 ± 2.35 mm and -1.44 ± 2.90 mm errors for Anterior-Posterior, Proximal-Distal and Lateral-Medial translations, respectively. It was concluded that this technique is feasible and facilitates the integration of arrays of A-mode ultrasound transducers with an optical motion tracking system for non-invasive dynamic tibiofemoral kinematics measurement., (Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
15. A lateral retinacular release during total knee arthroplasty changes femorotibial kinematics: an in vitro study.
- Author
-
Steinbrück A, Schröder C, Woiczinski M, Glogaza A, Müller PE, Jansson V, and Fottner A
- Subjects
- Biomechanical Phenomena physiology, Cadaver, Female, Humans, Knee Joint surgery, Male, Middle Aged, Rotation, Arthroplasty, Replacement, Knee methods, Knee Joint physiology, Ligaments, Articular surgery
- Abstract
Introduction: Lateral retinacular release (LRR) is a common procedure during total knee arthroplasty (TKA), especially if patellar maltracking is observed intraoperatively. The impact of LRR on patellofemoral kinematics is well-examined, but the influence on femorotibial kinematics requires more elucidation. Therefore, the aim of this study was to evaluate the effects of LRR on femorotibial kinematics in vitro., Materials and Methods: A fixed bearing TKA was implanted in six human knee specimens. Femorotibial kinematics were measured dynamically through the use of a custom-constructed knee rig which flexes the knee from 20° to 120° under weight bearing conditions. Measurements were performed before and after LRR. LRR was performed completely including transection of synovium, retinaculum and tractus fibers. For the registration of tibiofemoral kinematics a 3-dimensional-ultrasound-based motion analysis system was used., Results: LRR revealed a significant reduction of femoral rollback at the lateral compartment (9.4 ± 5.0 vs 7.8 ± 9.4 mm; p < 0.01), whereas the present decrease of femoral rollback at the medial compartment was not significant (3.4 ± 4.7 vs 2.3 ± 5.9 mm; p = 0.34). Accordingly, LRR significantly reduced internal rotation of the tibia (0.8°; p < 0.01)., Conclusion: The results suggest that LRR significantly decreases lateral femoral rollback as well as internal rotation of the tibia, probably by changing the tension of the iliotibial band. When performing a LRR in clinical routine, surgeons should be aware of altering not only patellofemoral kinematics but also the femorotibial kinematics.
- Published
- 2018
- Full Text
- View/download PDF
16. In vivo tibiofemoral skeletal kinematics and cartilage contact arthrokinematics during decline walking after isolated meniscectomy.
- Author
-
Zheng L, Carey R, Thorhauer E, Tashman S, Harner C, and Zhang X
- Subjects
- Adolescent, Adult, Biomechanical Phenomena, Female, Humans, Male, Middle Aged, Young Adult, Cartilage surgery, Femur physiology, Mechanical Phenomena, Meniscectomy, Tibia physiology, Walking
- Abstract
We investigated the effects of isolated meniscectomy on tibiofemoral skeletal kinematics and cartilage contact arthrokinematics in vivo. We recruited nine patients who had undergone isolated medial or lateral meniscectomy, and used a dynamic stereo-radiography (DSX) system to image the patients' knee motion during decline walking. A volumetric model-based tracking process determined 3D tibiofemoral kinematics from the recorded DSX images. Cartilage contact arthrokinematics was derived from the intersection between tibial and femoral cartilage models co-registered to the bones. The kinematics and arthrokinematics were analyzed for early stance and loading response phase (30% of a gait cycle), comparing the affected and intact knees. Results showed that four patients with medial meniscectomy had significantly greater contact centroid excursions in the meniscectomized medial compartments while five patients with lateral meniscectomy had significantly greater cartilage contact area and lateral shift of contact centroid path in the meniscectomized lateral compartments, comparing to those of the same compartments in the contralateral intact knees. No consistent difference however was identified in the skeletal kinematics. The current study demonstrated that cartilage-based intra-articular arthrokinematics is more sensitive and insightful than the skeletal kinematics in assessing the meniscectomy effects., (Copyright © 2017 IPEM. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
17. Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling.
- Author
-
Zheng L, Li K, Shetye S, and Zhang X
- Subjects
- Adult, Arthroplasty, Replacement, Knee, Biomechanical Phenomena, Electromyography, Humans, Knee Joint diagnostic imaging, Male, Motion, Muscle, Skeletal diagnostic imaging, Radiography, Knee Joint physiology, Models, Biological, Muscle, Skeletal physiology
- Abstract
This manuscript presents a new subject-specific musculoskeletal dynamic modeling approach that integrates high-accuracy dynamic stereo-radiography (DSX) joint kinematics and surface-based full-body motion data. We illustrate this approach by building a model in OpenSim for a patient who participated in a meniscus transplantation efficacy study, incorporating DSX data of the tibiofemoral joint kinematics. We compared this DSX-incorporated (DSXI) model to a default OpenSim model built using surface-measured data alone. The architectures and parameters of the two models were identical, while the differences in (time-averaged) tibiofemoral kinematics were of the order of magnitude of 10° in rotation and 10mm in translation. Model-predicted tibiofemoral compressive forces and knee muscle activations were compared against literature data acquired from instrumented total knee replacement components (Fregly et al., 2012) and the patient's EMG recording. The comparison demonstrated that the incorporation of DSX data improves the veracity of musculoskeletal dynamic modeling., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.