41 results on '"Tesson, Christelle"'
Search Results
2. Long-Read Sequencing Unravels the Complexity of Structural Variants in PRKN in Two Individuals with Early-Onset Parkinson's Disease.
- Author
-
Cogan G, Daida K, Billingsley KJ, Tesson C, Forlani S, Jornea L, Arnaud L, Tissier L, LeGuern E, Singleton AB, Ferrien M, Bernard HG, Lesage S, Blauwendraat C, and Brice A
- Published
- 2024
- Full Text
- View/download PDF
3. PSMF1 variants cause a phenotypic spectrum from early-onset Parkinson's disease to perinatal lethality by disrupting mitochondrial pathways.
- Author
-
Magrinelli F, Tesson C, Angelova PR, Salazar-Villacorta A, Rodriguez JA, Scardamaglia A, Chung BH, Jaconelli M, Vona B, Esteras N, Kwong AK, Courtin T, Maroofian R, Alavi S, Nirujogi R, Severino M, Lewis PA, Efthymiou S, O'Callaghan B, Buchert R, Sofan L, Lis P, Pinon C, Breedveld GJ, Chui MM, Murphy D, Pitz V, Makarious MB, Cassar M, Hassan BA, Iftikhar S, Rocca C, Bauer P, Tinazzi M, Svetel M, Samanci B, Hanağası HA, Bilgiç B, Obeso JA, Kurtis MM, Cogan G, Başak AN, Kiziltan G, Gül T, Yalçın G, Elibol B, Barišić N, Ng EW, Fan SS, Hershkovitz T, Weiss K, Raza Alvi J, Sultan T, Azmi Alkhawaja I, Froukh T, E Alrukban HA, Fauth C, Schatz UA, Zöggeler T, Zech M, Stals K, Varghese V, Gandhi S, Blauwendraat C, Hardy JA, Lesage S, Bonifati V, Haack TB, Bertoli-Avella AM, Steinfeld R, Alessi DR, Steller H, Brice A, Abramov AY, Bhatia KP, and Houlden H
- Abstract
Dissecting biological pathways highlighted by Mendelian gene discovery has provided critical insights into the pathogenesis of Parkinson's disease (PD) and neurodegeneration. This approach ultimately catalyzes the identification of potential biomarkers and therapeutic targets. Here, we identify PSMF1 as a new gene implicated in PD and childhood neurodegeneration. We find that biallelic PSMF1 missense and loss-of-function variants co-segregate with phenotypes from early-onset PD and parkinsonism to perinatal lethality with neurological manifestations across 15 unrelated pedigrees with 22 affected subjects, showing clear genotype-phenotype correlation. PSMF1 encodes the proteasome regulator PSMF1/PI31, a highly conserved, ubiquitously expressed partner of the 20S proteasome and neurodegeneration-associated F-box-O 7 and valosin-containing proteins. We demonstrate that PSMF1 variants impair mitochondrial membrane potential, dynamics and mitophagy in patient-derived fibroblasts. Additionally, we develop models of psmf1 knockdown Drosophila and Psmf1 conditional knockout mouse exhibiting age-dependent motor impairment, with diffuse gliosis in mice. These findings unequivocally link defective PSMF1 to early-onset PD and neurodegeneration and suggest mitochondrial dysfunction as a mechanistic contributor.
- Published
- 2024
- Full Text
- View/download PDF
4. RAB32 Ser71Arg in autosomal dominant Parkinson's disease: linkage, association, and functional analyses.
- Author
-
Gustavsson EK, Follett J, Trinh J, Barodia SK, Real R, Liu Z, Grant-Peters M, Fox JD, Appel-Cresswell S, Stoessl AJ, Rajput A, Rajput AH, Auer R, Tilney R, Sturm M, Haack TB, Lesage S, Tesson C, Brice A, Vilariño-Güell C, Ryten M, Goldberg MS, West AB, Hu MT, Morris HR, Sharma M, Gan-Or Z, Samanci B, Lis P, Periñan MT, Amouri R, Ben Sassi S, Hentati F, Tonelli F, Alessi DR, and Farrer MJ
- Subjects
- Adult, Aged, Female, Humans, Male, Middle Aged, Canada epidemiology, Case-Control Studies, Exome Sequencing, Genetic Linkage genetics, Genetic Predisposition to Disease genetics, Genotype, Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 genetics, Tunisia, Parkinson Disease genetics, rab GTP-Binding Proteins genetics
- Abstract
Background: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease., Methods: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities., Findings: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I
2 =99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71., Interpretation: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling., Funding: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council., Competing Interests: Declaration of interests AR receives unrestricted research support from the Dr Ali Rajput Endowment for Parkinson's Disease and Movement Disorders; in the past 2 years AR has received honoraria from Quebec Consortium for Drug Discovery–Brain Canada and Ipsen Biopharmaceuticals Canada. MSG reports grants from National Institutes of Health (NIH)–National Institute of Neurological Disorders and Stroke (NINDS) and the Michael J Fox Foundation for Parkinson's Research. AJS has received fees from Neurocrine (Chair, Data and Safety Monitoring Board [DSMB]), AskBio (Member, DSMB) and Capsida (advisor), receives a stipend from the International Parkinson's and Movement Disorders Society (Editor-in-Chief, Movement Disorders) and grant funding from Michael J Fox Foundation, Weston Brain Institute, and Brain Canada. ZG-O received consultancy fees from Bial Biotec, Bial, Capsida, Handl Therapeutics, Idorsia, Neuron23, Ono Therapeutics, Prevail Therapeutics, UCB, and Vanqua. He reports grants from the Michael J Fox Foundation for Parkinson's Research, The Weston Family Foundation, The Silverstein Foundation, NIH, and the Canadian Consortium on Neurodegeneration in Aging. HRM is employed by University College Londn. In the last 12 months he reports paid consultancy from Roche, Aprinoia, AI Therapeutics, and Amylyx; lecture fees or honoraria from BMJ, Kyowa Kirin, Movement Disorders Society; and research grants from Parkinson's UK, Cure Parkinson's Trust, PSP Association, Medical Research Council, and Michael J Fox Foundation. HRM is a co-applicant on a patent application related to C9ORF72: method for diagnosing a neurodegenerative disease (PCT/GB2012/052140). MJF reports US patents associated with LRRK2 mutations and mouse models (8409809 and 8455243), and methods of treating neurodegenerative disease (20110092565). SA-C has received honoraria from Merz, and grant funding from the Pacific Parkinson's Research Institute, the Weston Family Foundation, Parkinson Canada, Canadian Institutes of Health Research (CIHR), the VGH and UBC Hospital Foundation, Rick's Heart Foundation, and the Jack and Darlene Poole Foundation. All other authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
5. Long-read sequencing unravels the complexity of structural variants in PRKN in two individuals with early-onset Parkinson's disease.
- Author
-
Cogan G, Daida K, Billingsley KJ, Tesson C, Forlani S, Jornea L, Arnaud L, Tissier L, LeGuern E, Singleton AB, Ferrien M, Gervais Bernard H, Lesage S, Blauwendraat C, and Brice A
- Abstract
Background: PRKN biallelic pathogenic variants are the most common cause of autosomal recessive early-onset Parkinson's disease (PD). However, the variants responsible for suspected PRKN- PD individuals are not always identified with standard genetic testing., Objectives: Identify the genetic cause in two siblings with a PRKN -PD phenotype using long-read sequencing (LRS)., Methods: The genetic investigation involved standard testing using successively multiple ligation probe amplification (MLPA), Sanger sequencing, targeted sequencing, whole-exome sequencing and LRS., Results: MLPA and targeted sequencing identified one copy of exon four in PRKN but no other variants were identified. Subsequently, LRS unveiled a large deletion encompassing exon 3 to 4 on one allele and a duplication of exon 3 on the second allele; explaining the siblings' phenotype. MLPA could not identify the balanced rearrangement of exon 3., Conclusions: This study highlights the potential utility of long-read sequencing in the context of unsolved typical PRKN- PD individuals.
- Published
- 2024
- Full Text
- View/download PDF
6. Genotype-phenotype correlation in PRKN-associated Parkinson's disease.
- Author
-
Menon PJ, Sambin S, Criniere-Boizet B, Courtin T, Tesson C, Casse F, Ferrien M, Mariani LL, Carvalho S, Lejeune FX, Rebbah S, Martet G, Houot M, Lanore A, Mangone G, Roze E, Vidailhet M, Aasly J, Gan Or Z, Yu E, Dauvilliers Y, Zimprich A, Tomantschger V, Pirker W, Álvarez I, Pastor P, Di Fonzo A, Bhatia KP, Magrinelli F, Houlden H, Real R, Quattrone A, Limousin P, Korlipara P, Foltynie T, Grosset D, Williams N, Narendra D, Lin HP, Jovanovic C, Svetel M, Lynch T, Gallagher A, Vandenberghe W, Gasser T, Brockmann K, Morris HR, Borsche M, Klein C, Corti O, Brice A, Lesage S, and Corvol JC
- Abstract
Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. A pathogenic variant in RAB32 causes autosomal dominant Parkinson's disease and activates LRRK2 kinase.
- Author
-
Gustavsson EK, Follett J, Trinh J, Barodia SK, Real R, Liu Z, Grant-Peters M, Fox JD, Appel-Cresswell S, Stoessl AJ, Rajput A, Rajput AH, Auer R, Tilney R, Sturm M, Haack TB, Lesage S, Tesson C, Brice A, Vilariño-Güell C, Ryten M, Goldberg MS, West AB, Hu MT, Morris HR, Sharma M, Gan-Or Z, Samanci B, Lis P, Tocino T, Amouri R, Sassi SB, Hentati F, Tonelli F, Alessi DR, and Farrer MJ
- Abstract
Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder. Mendelian forms have revealed multiple genes, with a notable emphasis on membrane trafficking; RAB GTPases play an important role in PD as a subset are both regulators and substrates of LRRK2 protein kinase. To explore the role of RAB GTPases in PD, we undertook a comprehensive examination of their genetic variability in familial PD., Methods: Affected probands from 130 multi-incident PD families underwent whole-exome sequencing and genotyping, Potential pathogenic variants in 61 RAB GTPases were genotyped in relatives to assess disease segregation. These variants were also genotyped in a larger case-control series, totaling 3,078 individuals (2,734 with PD). The single most significant finding was subsequently validated within genetic data (6,043 with PD). Clinical and pathologic findings were summarized for gene-identified patients, and haplotypes were constructed. In parallel, wild-type and mutant RAB GTPase structural variation, protein interactions, and resultant enzyme activities were assessed., Findings: We found RAB32 c.213C>G (Ser71Arg) to co-segregate with autosomal dominant parkinsonism in three multi-incident families. RAB32 Ser71Arg was also significantly associated with PD in case-control samples: genotyping and database searches identified thirteen more patients with the same variant that was absent in unaffected controls. Notably, RAB32 Ser71Arg heterozygotes share a common haplotype. At autopsy, one patient had sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In transfected cells the RAB32 Arg71 was twice as potent as Ser71 wild type to activate LRRK2 kinase., Interpretation: Our study provides unequivocal evidence to implicate RAB32 Ser71Arg in PD. Functional analysis demonstrates LRRK2 kinase activation. We provide a mechanistic explanation to expand and unify the etiopathogenesis of monogenic PD., Funding: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J. Fox Foundation for Parkinson's Research, and the UK Medical Research Council., Competing Interests: AR receives unrestricted research support from the Dr. Ali Rajput Endowment for Parkinson’s Disease and Movement Disorders; in the past two years AR has received honoraria from CQDM/Brain Canada and Ipsen Biopharmaceuticals Canada. MSG reports grants from NIH/NINDS and the Michael J. Fox Foundation for Parkinson’s Research. AJS has received fees from Neurocrine (Chair, DSMB), AskBio (Member, DSMB) and Capsida (advisor), receives a stipend from the International Parkinsons and Movement Disorders Society (Editor-in-Chief, Movement Disorders) and grant funding from Michael J. Fox Foundation, Weston Brain Institute and Brain Canada. ZGO received consultancy fees from Bial Biotec, Bial, Capsida, Handl Therapeutics, Idorsia, Neuron23, Ono Therapeutics, Prevail Therapeutics, UCB and Vanqua. He reports grants from the Michael J. Fox Foundation for Parkinson’s Research, The Weston Family Foundation, The Silverstein Foundation, NIH and the Canadian Consortium on Neurodegeneration in Aging (CCNA). MJF reports US patents associated with LRRK2 mutations and mouse models (8409809, 8455243), and methods of treating neurodegenerative disease (20110092565). SAC has received honoraria from Merz, and grant funding from the Pacific Parkinson’s Research Institute, the Weston Family Foundation, Parkinson Canada, Canadian Institutes of Health Research, the VGH and UBC Hospital Foundation, Rick’s Heart Foundation and the Jack and Darlene Poole Foundation.
- Published
- 2024
- Full Text
- View/download PDF
8. Proxy-analysis of the genetics of cognitive decline in Parkinson's disease through polygenic scores.
- Author
-
Faouzi J, Tan M, Casse F, Lesage S, Tesson C, Brice A, Mangone G, Mariani LL, Iwaki H, Colliot O, Pihlstrøm L, and Corvol JC
- Abstract
Cognitive decline is common in Parkinson's disease (PD) and its genetic risk factors are not well known to date, besides variants in the GBA and APOE genes. However, variation in complex traits is caused by numerous variants and is usually studied with genome-wide association studies (GWAS), requiring a large sample size, which is difficult to achieve for outcome measures in PD. Taking an alternative approach, we computed 100 polygenic scores (PGS) related to cognitive, dementia, stroke, and brain anatomical phenotypes and investigated their association with cognitive decline in six longitudinal cohorts. The analysis was adjusted for age, sex, genetic ancestry, follow-up duration, GBA and APOE status. Then, we meta-analyzed five of these cohorts, comprising a total of 1702 PD participants with 6156 visits, using the Montreal Cognitive Assessment as a cognitive outcome measure. After correction for multiple comparisons, we found four PGS significantly associated with cognitive decline: intelligence (p = 5.26e-13), cognitive performance (p = 1.46e-12), educational attainment (p = 8.52e-10), and reasoning (p = 3.58e-5). Survival analyses highlighted an offset of several years between the first and last quartiles of PGS, with significant differences for the PGS of cognitive performance (5 years) and educational attainment (7 years). In conclusion, we found four PGS associated with cognitive decline in PD, all associated with general cognitive phenotypes. This study highlights the common genetic factors between cognitive decline in PD and the general population, and the importance of the participant's cognitive reserve for cognitive outcome in PD., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
9. Identification of a DAGLB Mutation in a Non-Chinese Patient with Parkinson's Disease.
- Author
-
Tesson C, Bouchetara MS, Ferrien M, Lesage S, and Brice A
- Subjects
- Humans, Age of Onset, Mutation genetics, Ubiquitin-Protein Ligases genetics, Parkinson Disease genetics
- Published
- 2023
- Full Text
- View/download PDF
10. Differences in Survival across Monogenic Forms of Parkinson's Disease.
- Author
-
Lanore A, Casse F, Tesson C, Courtin T, Menon PJ, Sambin S, Mangone G, Mariani LL, Lesage S, Brice A, Elbaz A, and Corvol JC
- Subjects
- Humans, Cohort Studies, Mutation genetics, Genotype, France epidemiology, Glucosylceramidase genetics, Parkinson Disease genetics
- Abstract
Objective: Survival of patients with monogenic Parkinson's disease may depend on the causative genes associated with the disease. In this study, we compare survival of patients with Parkinson's disease according to the presence of SNCA, PRKN, LRRK2, or GBA mutations., Methods: Data from the French Parkinson Disease Genetics national multicenter cohort study were used. Patients with sporadic and familial Parkinson's disease were recruited between 1990 and 2021. Patients were genotyped for the presence of mutations in the SNCA, PRKN, LRRK2, or GBA genes. Vital status was collected from the National death register for participants born in France. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using multivariable Cox proportional hazards regression., Results: Of the 2,037 patients with Parkinson's disease, 889 had died after a follow-up of up to 30 years. Patients with PRKN (n = 100, HR = 0.41; p = 0.001) and LRRK2 mutations (n = 51, HR = 0.49; p = 0.023) had longer survival than those without any mutation, whereas patients with SNCA (n = 20, HR = 9.88; p < 0.001) or GBA mutations (n = 173, HR = 1.33; p = 0.048) had shorter survival., Interpretation: Survival differs across genetic forms of Parkinson's disease, with higher mortality for patients with SNCA or GBA mutations, and lower mortality for those with PRKN or LRRK2 mutations. Differences in severity and disease progression among monogenic forms of Parkinson's disease likely explain these findings, which has important consequences for genetic counselling and choice of end points for future clinical trials for targeted therapies. ANN NEUROL 2023;94:123-132., (© 2023 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.)
- Published
- 2023
- Full Text
- View/download PDF
11. Intrafamilial and interfamilial heterogeneity of PINK1-associated Parkinson's disease in Sudan.
- Author
-
Bakhit Y, Ibrahim MO, Tesson C, Elhassan AA, Ahmed MA, Alebeed MA, Elrasheed SM, Omar MA, Abubaker R, Eltom K, Shaheen MT, Ibrahim YA, Almak ME, Ali HA, Abugrain AA, Almahal MA, MohamedSharif AA, Tahir MY, Malik SM, Eldirdiri Abdelrahman H, Khidir RJ, Mohamed MT, Abdalla A, Elsayed LEO, Lesage S, Corvol JC, Seidi O, and Wüllner U
- Subjects
- Humans, Sudan, Homozygote, Mutation genetics, Protein Kinases genetics, Age of Onset, Parkinson Disease genetics, Parkinsonian Disorders genetics
- Abstract
PINK1 is the second most predominant gene associated with autosomal recessive Parkinson's disease. Homozygous mutations in this gene are associated with an early onset of symptoms. Bradykinesia, tremors, and rigidity are common features, while dystonia, motor fluctuation, and non-motor symptoms occur in a lower percentage of cases and usually respond well to levodopa. We investigated 14 individuals with parkinsonism and eleven symptom-free siblings from three consanguineous Sudanese families, two of them multigenerational, using a custom gene panel screening 34 genes, 27 risk variants, and 8 candidate genes associated with parkinsonism. We found a known pathogenic nonsense PINK1 variant (NM_032409.3:c.1366C>T; p.(Gln456*)), a novel pathogenic single base duplication (NM_032409.3:c.1597dup; p.(Gln533Profs*29)), and another novel pathogenic insertion (NM_032409.3:c.1448_1449ins[1429_1443; TTGAG]; p.(Arg483Serfs*7)). All variants were homozygous and co-segregated in all affected family members. We also identified intrafamilial and interfamilial phenotypic heterogeneity associated with PINK1 mutations in these Sudanese cases, possibly reflecting the nature of the Sudanese population that has a large effective population size, which suggests a higher possibility of novel findings in monogenic and polygenic diseases in Sudan., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
12. PLA2G6-associated late-onset parkinsonism in a Sudanese family.
- Author
-
Bakhit Y, Tesson C, Ibrahim MO, Eltom K, Eltazi I, Elsayed LEO, Lesage S, Seidi O, Corvol JC, and Wüllner U
- Subjects
- Adult, Humans, Middle Aged, Genetic Testing, Group VI Phospholipases A2 genetics, Mutation, Dystonia genetics, Dystonic Disorders genetics, Parkinsonian Disorders genetics
- Abstract
Introduction: The phospholipase A2 group VI gene (PLA2G6) encodes an enzyme that catalyzes the hydrolytic release of fatty acids from phospholipids. Four neurological disorders with infantile, juvenile, or early adult-onset are associated with PLA2G6 genetic alterations, namely infantile neuroaxonal dystrophy (INAD), atypical neuroaxonal dystrophy (ANAD), dystonia-parkinsonism (DP), and autosomal recessive early-onset parkinsonism (AREP). Few studies in Africa reported PLA2G6-associated disorders and none with parkinsonism of late adult onset., Material and Methods: The patients were clinically assessed following UK Brain Bank diagnostic criteria and International Parkinson and Movement Disorder Society's Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Brain MRI without contrast was performed. Genetic testing was done using a custom-made Twist panel, screening 34 known genes, 27 risk factors, and 8 candidate genes associated with parkinsonism. Filtered variants were PCR-amplified and validated using Sanger sequencing and also tested in additional family members to study their segregation., Result: Two siblings born to consanguineous parents developed parkinsonism at the age of 58 and 60 years, respectively. MRI showed an enlarged right hippocampus in patient 2, but no overt abnormalities indicative of INAD or iron deposits. We found two heterozygous variants in PLA2G6, an in-frame deletion NM_003560:c.2070_2072del (p.Val691del) and a missense variant NM_003560:c.956C>T (p.Thr319Met). Both variants were classified as pathogenic., Conclusion: This is the first case in which PLA2G6 is associated with late-onset parkinsonism. Functional analysis is needed to confirm the dual effect of both variants on the structure and function of iPLA2β., (© 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.)
- Published
- 2023
- Full Text
- View/download PDF
13. PTPA variants and impaired PP2A activity in early-onset parkinsonism with intellectual disability.
- Author
-
Fevga C, Tesson C, Carreras Mascaro A, Courtin T, van Coller R, Sakka S, Ferraro F, Farhat N, Bardien S, Damak M, Carr J, Ferrien M, Boumeester V, Hundscheid J, Grillenzoni N, Kessissoglou IA, Kuipers DJS, Quadri M, Corvol JC, Mhiri C, Hassan BA, Breedveld GJ, Lesage S, Mandemakers W, Brice A, and Bonifati V
- Subjects
- Animals, Brain metabolism, Drosophila melanogaster genetics, Drosophila melanogaster metabolism, Protein Phosphatase 2 genetics, Protein Phosphatase 2 metabolism, Phosphoprotein Phosphatases metabolism, Intellectual Disability genetics, Parkinsonian Disorders genetics
- Abstract
The protein phosphatase 2A complex (PP2A), the major Ser/Thr phosphatase in the brain, is involved in a number of signalling pathways and functions, including the regulation of crucial proteins for neurodegeneration, such as alpha-synuclein, tau and LRRK2. Here, we report the identification of variants in the PTPA/PPP2R4 gene, encoding a major PP2A activator, in two families with early-onset parkinsonism and intellectual disability. We carried out clinical studies and genetic analyses, including genome-wide linkage analysis, whole-exome sequencing, and Sanger sequencing of candidate variants. We next performed functional studies on the disease-associated variants in cultured cells and knock-down of ptpa in Drosophila melanogaster. We first identified a homozygous PTPA variant, c.893T>G (p.Met298Arg), in patients from a South African family with early-onset parkinsonism and intellectual disability. Screening of a large series of additional families yielded a second homozygous variant, c.512C>A (p.Ala171Asp), in a Libyan family with a similar phenotype. Both variants co-segregate with disease in the respective families. The affected subjects display juvenile-onset parkinsonism and intellectual disability. The motor symptoms were responsive to treatment with levodopa and deep brain stimulation of the subthalamic nucleus. In overexpression studies, both the PTPA p.Ala171Asp and p.Met298Arg variants were associated with decreased PTPA RNA stability and decreased PTPA protein levels; the p.Ala171Asp variant additionally displayed decreased PTPA protein stability. Crucially, expression of both variants was associated with decreased PP2A complex levels and impaired PP2A phosphatase activation. PTPA orthologue knock-down in Drosophila neurons induced a significant impairment of locomotion in the climbing test. This defect was age-dependent and fully reversed by L-DOPA treatment. We conclude that bi-allelic missense PTPA variants associated with impaired activation of the PP2A phosphatase cause autosomal recessive early-onset parkinsonism with intellectual disability. Our findings might also provide new insights for understanding the role of the PP2A complex in the pathogenesis of more common forms of neurodegeneration., (© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2023
- Full Text
- View/download PDF
14. Detection of ATXN2 Expansions in an Exome Dataset: An Underdiagnosed Cause of Parkinsonism.
- Author
-
Casse F, Courtin T, Tesson C, Ferrien M, Noël S, Fauret-Amsellem AL, Gareau T, Guegan J, Anheim M, Mariani LL, Le Forestier N, Tranchant C, Corvol JC, Lesage S, and Brice A
- Abstract
Background: CAG-repeat expansions in Ataxin 2 ( ATXN2 ) are known to cause spinocerebellar ataxia type 2 (SCA2), but CAA interrupted expansions may also result in autosomal dominant Parkinson's disease (AD PD). However, because of technical limitations, such expansions are not explored in whole exome sequencing (WES) data., Objectives: To identify ATXN2 expansions using WES data from PD cases., Methods: We explored WES data from a cohort of 477 index cases with PD using ExpansionHunter (Illumina DRAGEN Bio-IT Platform, San Diego, CA). Putative expansions were confirmed by combining polymerase chain reaction and fragment length analysis followed by sub-cloning and sequencing methods., Results: Using ExpansionHunter, we identified three patients from two families with AD PD carrying either ATXN2 22/39 or 22/37 repeats, both interrupted by four CAA repeats., Conclusion: These findings demonstrate the usefulness of WES to detect pathogenic CAG repeat expansions, which were found in 1.7% of AD PD in the ATXN2 gene in our exome dataset., (© 2023 The Authors. Movement Disorders Clinical Practice published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.)
- Published
- 2023
- Full Text
- View/download PDF
15. Embracing Monogenic Parkinson's Disease: The MJFF Global Genetic PD Cohort.
- Author
-
Vollstedt EJ, Schaake S, Lohmann K, Padmanabhan S, Brice A, Lesage S, Tesson C, Vidailhet M, Wurster I, Hentati F, Mirelman A, Giladi N, Marder K, Waters C, Fahn S, Kasten M, Brüggemann N, Borsche M, Foroud T, Tolosa E, Garrido A, Annesi G, Gagliardi M, Bozi M, Stefanis L, Ferreira JJ, Correia Guedes L, Avenali M, Petrucci S, Clark L, Fedotova EY, Abramycheva NY, Alvarez V, Menéndez-González M, Jesús Maestre S, Gómez-Garre P, Mir P, Belin AC, Ran C, Lin CH, Kuo MC, Crosiers D, Wszolek ZK, Ross OA, Jankovic J, Nishioka K, Funayama M, Clarimon J, Williams-Gray CH, Camacho M, Cornejo-Olivas M, Torres-Ramirez L, Wu YR, Lee-Chen GJ, Morgadinho A, Pulkes T, Termsarasab P, Berg D, Kuhlenbäumer G, Kühn AA, Borngräber F, de Michele G, De Rosa A, Zimprich A, Puschmann A, Mellick GD, Dorszewska J, Carr J, Ferese R, Gambardella S, Chase B, Markopoulou K, Satake W, Toda T, Rossi M, Merello M, Lynch T, Olszewska DA, Lim SY, Ahmad-Annuar A, Tan AH, Al-Mubarak B, Hanagasi H, Koziorowski D, Ertan S, Genç G, de Carvalho Aguiar P, Barkhuizen M, Pimentel MMG, Saunders-Pullman R, van de Warrenburg B, Bressman S, Toft M, Appel-Cresswell S, Lang AE, Skorvanek M, Boon AJW, Krüger R, Sammler EM, Tumas V, Zhang BR, Garraux G, Chung SJ, Kim YJ, Winkelmann J, Sue CM, Tan EK, Damásio J, Klivényi P, Kostic VS, Arkadir D, Martikainen M, Borges V, Hertz JM, Brighina L, Spitz M, Suchowersky O, Riess O, Das P, Mollenhauer B, Gatto EM, Petersen MS, Hattori N, Wu RM, Illarioshkin SN, Valente EM, Aasly JO, Aasly A, Alcalay RN, Thaler A, Farrer MJ, Brockmann K, Corvol JC, and Klein C
- Subjects
- Humans, Mutation, Parkinson Disease genetics
- Abstract
Background: As gene-targeted therapies are increasingly being developed for Parkinson's disease (PD), identifying and characterizing carriers of specific genetic pathogenic variants is imperative. Only a small fraction of the estimated number of subjects with monogenic PD worldwide are currently represented in the literature and availability of clinical data and clinical trial-ready cohorts is limited., Objective: The objectives are to (1) establish an international cohort of affected and unaffected individuals with PD-linked variants; (2) provide harmonized and quality-controlled clinical characterization data for each included individual; and (3) further promote collaboration of researchers in the field of monogenic PD., Methods: We conducted a worldwide, systematic online survey to collect individual-level data on individuals with PD-linked variants in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1, as well as selected pathogenic and risk variants in GBA and corresponding demographic, clinical, and genetic data. All registered cases underwent thorough quality checks, and pathogenicity scoring of the variants and genotype-phenotype relationships were analyzed., Results: We collected 3888 variant carriers for our analyses, reported by 92 centers (42 countries) worldwide. Of the included individuals, 3185 had a diagnosis of PD (ie, 1306 LRRK2, 115 SNCA, 23 VPS35, 429 PRKN, 75 PINK1, 13 DJ-1, and 1224 GBA) and 703 were unaffected (ie, 328 LRRK2, 32 SNCA, 3 VPS35, 1 PRKN, 1 PINK1, and 338 GBA). In total, we identified 269 different pathogenic variants; 1322 individuals in our cohort (34%) were indicated as not previously published., Conclusions: Within the MJFF Global Genetic PD Study Group, we (1) established the largest international cohort of affected and unaffected individuals carrying PD-linked variants; (2) provide harmonized and quality-controlled clinical and genetic data for each included individual; (3) promote collaboration in the field of genetic PD with a view toward clinical and genetic stratification of patients for gene-targeted clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society., (© 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.)
- Published
- 2023
- Full Text
- View/download PDF
16. Lack of evidence for association of UQCRC1 with autosomal dominant Parkinson's disease in Caucasian families.
- Author
-
Courtin T, Tesson C, Corvol JC, Lesage S, and Brice A
- Subjects
- Humans, Mutation, White People genetics, Arthrogryposis, Parkinson Disease genetics
- Published
- 2021
- Full Text
- View/download PDF
17. Correction: Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment.
- Author
-
Roux T, Barbier M, Papin M, Davoine CS, Sayah S, Coarelli G, Charles P, Marelli C, Parodi L, Tranchant C, Goizet C, Klebe S, Lohmann E, Van Maldergem L, van Broeckhoven C, Coutelier M, Tesson C, Stevanin G, Duyckaerts C, Brice A, and Durr A
- Published
- 2021
- Full Text
- View/download PDF
18. Clinical Variability of SYNJ1 -Associated Early-Onset Parkinsonism.
- Author
-
Lesage S, Mangone G, Tesson C, Bertrand H, Benmahdjoub M, Kesraoui S, Arezki M, Singleton A, Corvol JC, and Brice A
- Abstract
Autosomal recessive early-onset parkinsonism is clinically and genetically heterogeneous. Mutations of three genes, PRKN, PINK1 , and DJ-1 cause pure phenotypes usually characterized by levodopa-responsive Parkinson's disease. By contrast, mutations of other genes, including ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, VPS13C , and PTRHD1 , cause rarer, more severe diseases with a poor response to levodopa, generally with additional atypical features. We performed data mining on a gene panel or whole-exome sequencing in 460 index cases with early-onset (≤ 40 years) Parkinson's disease, including 57 with autosomal recessive disease and 403 isolated cases. We identified two isolated cases carrying biallelic mutations of SYNJ1 (double-heterozygous p.D791fs/p.Y232H and homozygous p. Y832C mutations) and two siblings with the recurrent homozygous p.R258Q mutation. All four variants were absent or rare in the Genome Aggregation Database, were predicted to be deleterious on in silico analysis and were found to be highly conserved between species. The patient with both the previously unknown p.D791fs and p.Y232H mutations presented with dystonia-parkinsonism accompanied by a frontal syndrome and oculomotor disturbances at the age of 39. In addition, two siblings from an Algerian consanguineous family carried the homozygous p.R258Q mutation and presented generalized tonic-clonic seizures during childhood, with severe intellectual disability, followed by progressive parkinsonism during their teens. By contrast, the isolated patient with the homozygous p. Y832C mutation, diagnosed at the age of 20, had typical parkinsonism, with no atypical symptoms and slow disease progression. Our findings expand the mutational spectrum and phenotypic profile of SYNJ1 -related parkinsonism., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Lesage, Mangone, Tesson, Bertrand, Benmahdjoub, Kesraoui, Arezki, Singleton, Corvol and Brice.)
- Published
- 2021
- Full Text
- View/download PDF
19. Gene Panel Sequencing Identifies Novel Pathogenic Mutations in Moroccan Patients with Familial Parkinson Disease.
- Author
-
Smaili I, Tesson C, Regragui W, Bertrand H, Rahmani M, Bouslam N, Benomar A, Brice A, Lesage S, and Bouhouche A
- Subjects
- Adult, Age of Onset, Aged, Alleles, Consanguinity, Female, Genes, Dominant, Genes, Recessive, Genetic Association Studies, Genetic Predisposition to Disease, High-Throughput Nucleotide Sequencing, Humans, Male, Middle Aged, Morocco epidemiology, Multiplex Polymerase Chain Reaction, Nerve Tissue Proteins genetics, Parkinson Disease epidemiology, Polymorphism, Single Nucleotide, Sequence Alignment, Sequence Homology, Nucleic Acid, Symptom Assessment, Mutation, Parkinson Disease genetics
- Abstract
In the past two decades, genetic studies of familial forms of Parkinson's disease (PD) have shown evidence that PD has a significant genetic component. Indeed, 12 genes are strongly involved in PD causality, three of them having dominant inheritance and 9 causing early-onset autosomal recessive forms, including 3 with a typical PD and 6 with an atypical parkinsonism. The aim of this study was to determine the genetic basis of familial PD in Moroccan patients. We selected 18 Moroccan index case with familial forms of PD. Patients were first screened for exon-rearrangements by MLPA kit. They were then analyzed by gene panel next-generation sequencing (NGS). Functional variants with minor allele frequencies < 0.5% in public databases were considered potential candidate variants to PD. In the 18 PD patients with a positive family history that were analyzed, MLPA assays identified PRKN deletions in two patients: a homozygous exon 3-5 deletion and a heterozygous exon 4 deletion. Sixteen rare SNV were identified by NGS, four of them were novel. Seven mutations were categorized as pathogenic, five as likely pathogenic, two to be of uncertain significance, and 3 were predicted to be likely benign but may give a weaker pathogenic effect and could contribute to PD since they were found in late-onset PD patients. Rare or novel mutations that could be related to the disease were identified in 72% of these patients (13/18), including nine with bi-allelic pathogenic/likely pathogenic variants in genes causing recessive PD, particularly PRKN and PINK1. Mutations in genes with dominant inheritance were found in 4/18 patients (22%).
- Published
- 2021
- Full Text
- View/download PDF
20. Segregation of ATP10B variants in families with autosomal recessive parkinsonism.
- Author
-
Tesson C, Lohmann E, Devos D, Bertrand H, Lesage S, and Brice A
- Subjects
- Family, Glucosylceramides, Humans, Lysosomes, Pedigree, Parkinson Disease, Parkinsonian Disorders genetics
- Published
- 2020
- Full Text
- View/download PDF
21. Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment.
- Author
-
Roux T, Barbier M, Papin M, Davoine CS, Sayah S, Coarelli G, Charles P, Marelli C, Parodi L, Tranchant C, Goizet C, Klebe S, Lohmann E, Van Maldergem L, van Broeckhoven C, Coutelier M, Tesson C, Stevanin G, Duyckaerts C, Brice A, and Durr A
- Subjects
- ATP-Dependent Proteases, ATPases Associated with Diverse Cellular Activities, Ataxia, Female, Humans, Male, Ubiquitin-Protein Ligases, Cerebellar Ataxia genetics, Cognitive Dysfunction, Spinocerebellar Ataxias genetics
- Abstract
Purpose: Pathogenic variants in STUB1 were initially described in autosomal recessive spinocerebellar ataxia type 16 and dominant cerebellar ataxia with cerebellar cognitive dysfunction (SCA48)., Methods: We analyzed a large series of 440 index cerebellar ataxia cases, mostly with dominant inheritance., Results: STUB1 variants were detected in 50 patients. Age at onset and severity were remarkably variable. Cognitive impairment, predominantly frontal syndrome, was observed in 54% of STUB1 variant carriers, including five families with Huntington or frontotemporal dementia disease-like phenotypes associated with ataxia, while no STUB1 variant was found in 115 patients with frontotemporal dementia. We report neuropathological findings of a STUB1 heterozygous patient, showing massive loss of Purkinje cells in the vermis and major loss in the cerebellar hemispheres without atrophy of the pons, hippocampus, or cerebral cortex. This screening of STUB1 variants revealed new features: (1) the majority of patients were women (70%) and (2) "second hits" in AFG3L2, PRKCG, and TBP were detected in three families suggesting synergic effects., Conclusion: Our results reveal an unexpectedly frequent (7%) implication of STUB1 among dominantly inherited cerebellar ataxias, and suggest that the penetrance of STUB1 variants could be modulated by other factors, including sex and variants in other ataxia-related genes.
- Published
- 2020
- Full Text
- View/download PDF
22. Characterization of Recessive Parkinson Disease in a Large Multicenter Study.
- Author
-
Lesage S, Lunati A, Houot M, Romdhan SB, Clot F, Tesson C, Mangone G, Toullec BL, Courtin T, Larcher K, Benmahdjoub M, Arezki M, Bouhouche A, Anheim M, Roze E, Viallet F, Tison F, Broussolle E, Emre M, Hanagasi H, Bilgic B, Tazir M, Djebara MB, Gouider R, Tranchant C, Vidailhet M, Le Guern E, Corti O, Mhiri C, Lohmann E, Singleton A, Corvol JC, and Brice A
- Subjects
- Adolescent, Adult, Aged, Aged, 80 and over, Child, DNA Mutational Analysis, Female, Genes, Recessive genetics, Genetic Predisposition to Disease genetics, Humans, Male, Middle Aged, Mutation, Young Adult, Parkinson Disease genetics, Protein Deglycase DJ-1 genetics, Protein Kinases genetics, Ubiquitin-Protein Ligases genetics
- Abstract
Studies of the phenotype and population distribution of rare genetic forms of parkinsonism are required, now that gene-targeting approaches for Parkinson disease have reached the clinical trial stage. We evaluated the frequencies of PRKN, PINK1, and DJ-1 mutations in a cohort of 1,587 cases. Mutations were found in 14.1% of patients; 27.6% were familial and 8% were isolated. PRKN was the gene most frequently mutated in Caucasians, whereas PINK1 mutations predominated in Arab-Berber individuals. Patients with PRKN mutations had an earlier age at onset, and less asymmetry, levodopa-induced motor complications, dysautonomia, and dementia than those without mutations. ANN NEUROL 2020;88:843-850., (© 2020 American Neurological Association.)
- Published
- 2020
- Full Text
- View/download PDF
23. Genetic and Phenotypic Basis of Autosomal Dominant Parkinson's Disease in a Large Multi-Center Cohort.
- Author
-
Lesage S, Houot M, Mangone G, Tesson C, Bertrand H, Forlani S, Anheim M, Brefel-Courbon C, Broussolle E, Thobois S, Damier P, Durif F, Roze E, Tison F, Grabli D, Ory-Magne F, Degos B, Viallet F, Cormier-Dequaire F, Ouvrard-Hernandez AM, Vidailhet M, Lohmann E, Singleton A, Corvol JC, and Brice A
- Abstract
LRRK2, SNCA , and VPS35 are unequivocally associated with autosomal dominant Parkinson's disease (PD). We evaluated the prevalence of LRRK2, SNCA , and VPS35 mutations and associated clinical features in a large French multi-center cohort of PD patients. Demographic and clinical data were collected for 1,805 index cases (592 with autosomal dominant inheritance and 1,213 isolated cases) since 1990. All probands were screened with TaqMan assays for LRRK2 Gly2019Ser. In the absence of this mutation, the coding sequences of the three genes were analyzed by Sanger sequencing and/or next-generation sequencing. The data for the three genes were analyzed according to age at onset, family history, ethnic origin and clinical features. We identified 160 index cases (8.9%) with known pathogenic variants: 138 with pathogenic LRRK2 variants (7.6%), including 136 with the Gly2019Ser mutation, 19 with SNCA point mutations or genomic rearrangements (1.1%), and three with the VPS35 Asp620Asn mutation (0.16%). Mutation frequencies were higher in familial than isolated cases, consistent with autosomal dominant inheritance (12.0 vs. 7.3%; OR 1.7, 95% CI [1.2-2.4], p = 0.001). PD patients with LRRK2 variants were more likely to have higher rates of late-onset PD (>50 years; OR 1.5, 95% CI [1.0-2.1], p = 0.03), whereas those with SNCA mutations tended to have earlier age at onset disease (≤ 50 years, p = 0.06). The clinical features of LRRK2 carriers and those without any pathogenic variants in known PD-associated genes were similar. The likelihood of detecting disease-causing mutations was higher in cases compatible with autosomal dominant inheritance., (Copyright © 2020 Lesage, Houot, Mangone, Tesson, Bertrand, Forlani, Anheim, Brefel-Courbon, Broussolle, Thobois, Damier, Durif, Roze, Tison, Grabli, Ory-Magne, Degos, Viallet, Cormier-Dequaire, Ouvrard-Hernandez, Vidailhet, Lohmann, Singleton, Corvol and Brice.)
- Published
- 2020
- Full Text
- View/download PDF
24. LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease.
- Author
-
Bonello F, Hassoun SM, Mouton-Liger F, Shin YS, Muscat A, Tesson C, Lesage S, Beart PM, Brice A, Krupp J, Corvol JC, and Corti O
- Subjects
- Adult, Aged, Benzodiazepinones pharmacology, Carbonyl Cyanide m-Chlorophenyl Hydrazone analogs & derivatives, Carbonyl Cyanide m-Chlorophenyl Hydrazone pharmacology, Female, Fibroblasts drug effects, Fibroblasts pathology, Fluorescence Resonance Energy Transfer, Humans, Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 antagonists & inhibitors, Male, Middle Aged, Mitochondria genetics, Mitochondria pathology, Mitophagy drug effects, Mutation, Parkinson Disease pathology, Phosphorylation, Primary Cell Culture, Pyrimidines pharmacology, Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 genetics, Parkinson Disease genetics, Protein Kinases genetics, Ubiquitin-Protein Ligases genetics
- Abstract
Mutations of LRRK2, encoding leucine-rich repeat kinase 2 (LRRK2), are the leading cause of autosomal dominant Parkinson's disease (PD). The most frequent of these mutations, G2019S substitution, increases kinase activity, but it remains unclear how it causes PD. Recent studies suggest that LRRK2 modulates mitochondrial homeostasis. Mitochondrial dysfunction plays a key role in the pathogenesis of autosomal recessive PD forms linked to PARK2 and PINK1, encoding the cytosolic E3 ubiquitin-protein ligase Parkin and the mitochondrial kinase PINK1, which jointly regulate mitophagy. We explored the role of LRRK2 and its kinase activity in PINK1/Parkin-dependent mitophagy. LRRK2 increased mitochondrial aggregation and attenuated mitochondrial clearance in cells coexpressing Parkin and exposed to the protonophore carbonylcyanide m-chlorophenylhydrazone. Förster resonance energy transfer imaging microscopy showed that LRRK2 impaired the interactions between Parkin and Drp1 and their mitochondrial targets early in mitophagy. The inhibition of LRRK2 kinase activity by a 'kinase-dead' LRRK2 mutation or with a pharmacological inhibitor (LRRK2-IN-1) restored these interactions. The monitoring of mitophagy in human primary fibroblasts with the novel dual-fluorescence mtRosella reporter and a new hypothermic shock paradigm revealed similar defects in PD patients with the G2019S LRRK2 substitution or PARK2 mutations relative to healthy subjects. This defect was restored by LRRK2-IN-1 treatment in LRRK2 patients only. Our results suggest that PD forms due to LRRK2 and PARK2 mutations involve pathogenic mechanisms converging on PINK1/Parkin-dependent mitophagy., (© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2019
- Full Text
- View/download PDF
25. SUMOylation by SUMO2 is implicated in the degradation of misfolded ataxin-7 via RNF4 in SCA7 models.
- Author
-
Marinello M, Werner A, Giannone M, Tahiri K, Alves S, Tesson C, den Dunnen W, Seeler JS, Brice A, and Sittler A
- Subjects
- Animals, Cerebellum metabolism, Child, Disease Models, Animal, HEK293 Cells, HeLa Cells, Humans, Inclusion Bodies metabolism, MCF-7 Cells, Mice, Middle Aged, Mutation genetics, Promyelocytic Leukemia Protein metabolism, Proteasome Inhibitors pharmacology, Protein Aggregates drug effects, Spinocerebellar Ataxias pathology, Ubiquitin metabolism, Ataxin-7 metabolism, Nuclear Proteins metabolism, Protein Folding drug effects, Proteolysis drug effects, Small Ubiquitin-Related Modifier Proteins metabolism, Spinocerebellar Ataxias metabolism, Sumoylation drug effects, Transcription Factors metabolism
- Abstract
Perturbation of protein homeostasis and aggregation of misfolded proteins is a major cause of many human diseases. A hallmark of the neurodegenerative disease spinocerebellar ataxia type 7 (SCA7) is the intranuclear accumulation of mutant, misfolded ataxin-7 (polyQ-ATXN7). Here, we show that endogenous ATXN7 is modified by SUMO proteins, thus also suggesting a physiological role for this modification under conditions of proteotoxic stress caused by the accumulation of polyQ-ATXN7. Co-immunoprecipitation experiments, immunofluorescence microscopy and proximity ligation assays confirmed the colocalization and interaction of polyQ-ATXN7 with SUMO2 in cells. Moreover, upon inhibition of the proteasome, both endogenous SUMO2/3 and the RNF4 ubiquitin ligase surround large polyQ-ATXN7 intranuclear inclusions. Overexpression of RNF4 and/or SUMO2 significantly decreased levels of polyQ-ATXN7 and, upon proteasomal inhibition, led to a marked increase in the polyubiquitination of polyQ-ATXN7. This provides a mechanism for the clearance of polyQ-ATXN7 from affected cells that involves the recruitment of RNF4 by SUMO2/3-modified polyQ-ATXN7, thus leading to its ubiquitination and proteasomal degradation. In a SCA7 knock-in mouse model, we similarly observed colocalization of SUMO2/3 with polyQ-ATXN7 inclusions in the cerebellum and retina. Furthermore, we detected accumulation of SUMO2/3 high-molecular-mass species in the cerebellum of SCA7 knock-in mice, compared with their wild-type littermates, and changes in SUMO-related transcripts. Immunohistochemical analysis showed the accumulation of SUMO proteins and RNF4 in the cerebellum of SCA7 patients. Taken together, our results show that the SUMO pathway contributes to the clearance of aggregated ATXN7 and suggest that its deregulation might be associated with SCA7 disease progression., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2019. Published by The Company of Biologists Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
26. LRP10 in α-synucleinopathies.
- Author
-
Tesson C, Brefel-Courbon C, Corvol JC, Lesage S, and Brice A
- Subjects
- Genetic Linkage, Humans, Lewy Bodies, Dementia, Lewy Body Disease, Parkinson Disease
- Published
- 2018
- Full Text
- View/download PDF
27. The E3 Ubiquitin Ligases TRIM17 and TRIM41 Modulate α-Synuclein Expression by Regulating ZSCAN21.
- Author
-
Lassot I, Mora S, Lesage S, Zieba BA, Coque E, Condroyer C, Bossowski JP, Mojsa B, Marelli C, Soulet C, Tesson C, Carballo-Carbajal I, Laguna A, Mangone G, Vila M, Brice A, and Desagher S
- Subjects
- Amino Acid Sequence, Animals, Base Sequence, Cell Line, Female, Gene Expression Regulation, Humans, Kruppel-Like Transcription Factors chemistry, Male, Mice, Inbred C57BL, Mutation genetics, Nuclear Proteins chemistry, Pedigree, Protein Binding, Proteolysis, Transcription, Genetic, Tripartite Motif Proteins, Ubiquitination, alpha-Synuclein genetics, Carrier Proteins metabolism, Kruppel-Like Transcription Factors metabolism, Nuclear Proteins metabolism, Trans-Activators metabolism, Ubiquitin-Protein Ligases metabolism, alpha-Synuclein metabolism
- Abstract
Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD., (Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
28. Mutation analysis of Parkinson's disease genes in a Russian data set.
- Author
-
Emelyanov AK, Usenko TS, Tesson C, Senkevich KA, Nikolaev MA, Miliukhina IV, Kopytova AE, Timofeeva AA, Yakimovsky AF, Lesage S, Brice A, and Pchelina SN
- Subjects
- Adult, Aged, Aged, 80 and over, Asian People genetics, Case-Control Studies, DNA Mutational Analysis, Female, Gene Frequency, Genetic Association Studies, Genetic Testing, Humans, Male, Middle Aged, Mutation, Russia, White People genetics, Genetic Predisposition to Disease, Parkinson Disease genetics
- Abstract
Common variants and risk factors related to familial and sporadic cases of Parkinson's disease (PD) in diverse populations have been identified at numerous genomic loci. In this study, genetic analysis was performed through a screening of LRRK2 G2019S, GBA mutations (L444P, N370S), and common variants (E326K, T369M) in 762 PD patients and in 400 controls. Next-generation sequencing analysis of 22 PD-related genes in 28 early-onset PD cases from North-Western region of Russia was performed. The frequency of LRRK2 G2019S mutation was 5.8% in familial and 0.5% in sporadic PD cases. The frequency of GBA mutations (L444P, N370S) in PD patients was higher compared to controls (odds ratio [OR] = 6.9, 95% confidence interval [CI], 0.9-53.13, p = 0.031), particularly in patients with early-onset compared to late-onset PD (OR = 3.90 [95% CI, 1.2-13.2], p = 0.009). The frequency of E326K and T369M was twice higher among PD patients than in controls (OR = 2.24, 95% CI 1.05-4.79, p = 0.033). However, the screening of 22 PD-related genes using our novel panel of gene resequencing in our series of 28 early-onset PD failed to identify any mutations. LRRK2 and GBA mutations were found to be common risk factors for PD in North-Western region of Russia., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
29. CYP2U1 activity is altered by missense mutations in hereditary spastic paraplegia 56.
- Author
-
Durand CM, Dhers L, Tesson C, Tessa A, Fouillen L, Jacqueré S, Raymond L, Coupry I, Benard G, Darios F, El-Hachimi KH, Astrea G, Rivier F, Banneau G, Pujol C, Lacombe D, Durr A, Babin PJ, Santorelli FM, Pietrancosta N, Boucher JL, Mansuy D, Stevanin G, and Goizet C
- Subjects
- Alleles, Amino Acid Substitution, Cytochrome P450 Family 2 chemistry, DNA Mutational Analysis, Enzyme Activation, Gene Expression, Genetic Association Studies, HEK293 Cells, Humans, Models, Molecular, Oxidation-Reduction, Phenotype, Protein Conformation, Spastic Paraplegia, Hereditary diagnosis, Cytochrome P450 Family 2 genetics, Cytochrome P450 Family 2 metabolism, Mutation, Missense, Spastic Paraplegia, Hereditary enzymology, Spastic Paraplegia, Hereditary genetics
- Abstract
Hereditary spastic paraplegia (HSP) is an inherited disorder of the central nervous system mainly characterized by gradual spasticity and weakness of the lower limbs. SPG56 is a rare autosomal recessive early onset complicated form of HSP caused by mutations in CYP2U1. The CYP2U1 enzyme was shown to catalyze the hydroxylation of arachidonic acid. Here, we report two further SPG56 families carrying three novel CYP2U1 missense variants and the development of an in vitro biochemical assay to determine the pathogenicity of missense variants of uncertain clinical significance. We compared spectroscopic, enzymatic, and structural (from a 3D model) characteristics of the over expressed wild-type or mutated CYP2U1 in HEK293T cells. Our findings demonstrated that most of the tested missense variants in CYP2U1 were functionally inactive because of a loss of proper heme binding or destabilization of the protein structure. We also showed that functional data do not necessarily correlate with in silico predictions of variants pathogenicity, using different bioinformatic phenotype prediction tools. Our results therefore highlight the importance to use biological tools, such as the enzymatic test set up in this study, to evaluate the effects of newly identified variants in clinical settings., (© 2017 Wiley Periodicals, Inc.)
- Published
- 2018
- Full Text
- View/download PDF
30. Mutation Analysis of Consanguineous Moroccan Patients with Parkinson's Disease Combining Microarray and Gene Panel.
- Author
-
Bouhouche A, Tesson C, Regragui W, Rahmani M, Drouet V, Tibar H, Souirti Z, Ben El Haj R, Bouslam N, Yahyaoui M, Brice A, Benomar A, and Lesage S
- Abstract
During the last two decades, 15 different genes have been reported to be responsible for the monogenic form of Parkinson's disease (PD), representing a worldwide frequency of 5-10%. Among them, 10 genes have been associated with autosomal recessive PD, with PRKN and PINK1 being the most frequent. In a cohort of 145 unrelated Moroccan PD patients enrolled since 2013, 19 patients were born from a consanguineous marriage, of which 15 were isolated cases and 4 familial. One patient was homozygous for the common LRRK2 G2019S mutation and the 18 others who did not carry this mutation were screened for exon rearrangements in the PRKN gene using Affymetrix Cytoscan HD microarray. Two patients were determined homozygous for PRKN exon-deletions, while another patient presented with compound heterozygous inheritance (3/18, 17%). Two other patients showed a region of homozygosity covering the 1p36.12 locus and were sequenced for the candidate PINK1 gene, which revealed two homozygous point mutations: the known Q456X mutation in exon 7 and a novel L539F variation in exon 8. The 13 remaining patients were subjected to next-generation sequencing (NGS) that targeted a panel of 22 PD-causing genes and overlapping phenotypes. NGS data showed that two unrelated consanguineous patients with juvenile-onset PD (12 and 13 years) carried the same homozygous stop mutation W258X in the ATP13A2 gene, possibly resulting from a founder effect; and one patient with late onset (76 years) carried a novel heterozygous frameshift mutation in SYNJ1 . Clinical analysis showed that patients with the ATP13A2 mutation developed juvenile-onset PD with a severe phenotype, whereas patients having either PRKN or PINK1 mutations displayed early-onset PD with a relatively mild phenotype. By identifying pathogenic mutations in 45% (8/18) of our consanguineous Moroccan PD series, we demonstrate that the combination of chromosomal microarray analysis and NGS is a powerful approach to pinpoint the genetic bases of autosomal recessive PD, particularly in countries with a high rate of consanguinity.
- Published
- 2017
- Full Text
- View/download PDF
31. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies.
- Author
-
Coutelier M, Coarelli G, Monin ML, Konop J, Davoine CS, Tesson C, Valter R, Anheim M, Behin A, Castelnovo G, Charles P, David A, Ewenczyk C, Fradin M, Goizet C, Hannequin D, Labauge P, Riant F, Sarda P, Sznajer Y, Tison F, Ullmann U, Van Maldergem L, Mochel F, Brice A, Stevanin G, and Durr A
- Subjects
- ATPases Associated with Diverse Cellular Activities, Adolescent, Adult, Age of Onset, Aged, Aged, 80 and over, Child, Child, Preschool, Cohort Studies, Female, Genes, Dominant, Genotype, Humans, Male, Middle Aged, Phenotype, Young Adult, Calcium Channels genetics, Cerebellar Ataxia genetics, Cerebellar Ataxia physiopathology, Channelopathies genetics, Channelopathies physiopathology, Metalloendopeptidases genetics
- Abstract
Autosomal dominant cerebellar ataxias have a marked heterogeneous genetic background, with mutations in 34 genes identified so far. This large amount of implicated genes accounts for heterogeneous clinical presentations, making genotype-phenotype correlations a major challenge in the field. While polyglutamine ataxias, linked to CAG repeat expansions in genes such as ATXN1, ATXN2, ATXN3, ATXN7, CACNA1A and TBP, have been extensively characterized in large cohorts, there is a need for comprehensive assessment of frequency and phenotype of more 'conventional' ataxias. After exclusion of CAG/polyglutamine expansions in spinocerebellar ataxia genes in 412 index cases with dominantly inherited cerebellar ataxias, we aimed to establish the relative frequencies of mutations in other genes, with an approach combining panel sequencing and TaqMan® polymerase chain reaction assay. We found relevant genetic variants in 59 patients (14.3%). The most frequently mutated were channel genes [CACNA1A (n = 16), KCND3 (n = 4), KCNC3 (n = 2) and KCNA1 (n = 2)]. Deletions in ITPR1 (n = 11) were followed by biallelic variants in SPG7 (n = 9). Variants in AFG3L2 (n = 7) came next in frequency, and variants were rarely found in STBN2 (n = 2), ELOVL5, FGF14, STUB1 and TTBK2 (n = 1 each). Interestingly, possible risk factor variants were detected in SPG7 and POLG. Clinical comparisons showed that ataxias due to channelopathies had a significantly earlier age at onset with an average of 24.6 years, versus 40.9 years for polyglutamine expansion spinocerebellar ataxias and 37.8 years for SPG7-related forms (P = 0.001). In contrast, disease duration was significantly longer in the former (20.5 years versus 9.3 and 13.7, P=0.001), though for similar functional stages, indicating slower progression of the disease. Of interest, intellectual deficiency was more frequent in channel spinocerebellar ataxias, while cognitive impairment in adulthood was similar among the three groups. Similar differences were found among a single gene group, comparing 23 patients with CACNA1A expansions (spinocerebellar ataxia 6) to 22 patients with CACNA1A point mutations, which had lower average age at onset (25.2 versus 47.3 years) with longer disease duration (18.7 versus 10.9), but lower severity indexes (0.39 versus 0.44), indicating slower progression of the disease. In conclusion, we identified relevant genetic variations in up to 15% of cases after exclusion of polyglutamine expansion spinocerebellar ataxias, and confirmed CACNA1A and SPG7 as major ataxia genes. We could delineate firm genotype-phenotype correlations that are important for genetic counselling and of possible prognostic value., (© The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
32. Mitochondrial morphology and cellular distribution are altered in SPG31 patients and are linked to DRP1 hyperphosphorylation.
- Author
-
Lavie J, Serrat R, Bellance N, Courtand G, Dupuy JW, Tesson C, Coupry I, Brice A, Lacombe D, Durr A, Stevanin G, Darios F, Rossignol R, Goizet C, and Bénard G
- Subjects
- Animals, Cells, Cultured, Dynamins, Female, Humans, Male, Membrane Transport Proteins genetics, Membrane Transport Proteins metabolism, Mice, Neurons pathology, Phosphoprotein Phosphatases genetics, Phosphoprotein Phosphatases metabolism, Phosphorylation genetics, Cell Nucleus genetics, Cell Nucleus metabolism, Cell Nucleus pathology, GTP Phosphohydrolases genetics, GTP Phosphohydrolases metabolism, Microtubule-Associated Proteins genetics, Microtubule-Associated Proteins metabolism, Mitochondria metabolism, Mitochondria pathology, Mitochondrial Proteins genetics, Mitochondrial Proteins metabolism, Neurons metabolism, Spastic Paraplegia, Hereditary metabolism, Spastic Paraplegia, Hereditary pathology
- Abstract
Hereditary spastic paraplegia, SPG31, is a rare neurological disorder caused by mutations in REEP1 gene encoding the microtubule-interacting protein, REEP1. The mechanism by which REEP1-dependent processes are linked with the disease is unclear. REEP1 regulates the morphology and trafficking of various organelles via interaction with the microtubules. In this study, we collected primary fibroblasts from SPG31 patients to investigate their mitochondrial morphology. We observed that the mitochondrial morphology in patient cells was highly tubular compared with control cells. We provide evidence that these morphological alterations are caused by the inhibition of mitochondrial fission protein, DRP1, due to the hyperphosphorylation of its serine 637 residue. This hyperphosphorylation is caused by impaired interactions between REEP1 and mitochondrial phosphatase PGAM5. Genetically or pharmacologically induced decrease of DRP1-S637 phosphorylation restores mitochondrial morphology in patient cells. Furthermore, ectopic expression of REEP1 carrying pathological mutations in primary neuronal culture targets REEP1 to the mitochondria. Mutated REEP1 proteins sequester mitochondria to the perinuclear region of the neurons and therefore, hamper mitochondrial transport along the axon. Considering the established role of mitochondrial distribution and morphology in neuronal health, our results support the involvement of a mitochondrial dysfunction in SPG31 pathology., (© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
33. Lack of evidence for a role of genetic variation in TMEM230 in the risk for Parkinson's disease in the Caucasian population.
- Author
-
Giri A, Mok KY, Jansen I, Sharma M, Tesson C, Mangone G, Lesage S, Bras JM, Shulman JM, Sheerin UM, Díez-Fairen M, Pastor P, Martí MJ, Ezquerra M, Tolosa E, Correia-Guedes L, Ferreira J, Amin N, van Duijn CM, van Rooij J, Uitterlinden AG, Kraaij R, Nalls M, and Simón-Sánchez J
- Subjects
- Databases, Genetic, Exome genetics, Female, Genes, Dominant genetics, Heterozygote, Humans, Male, Risk, Sequence Analysis, White People genetics, Genetic Association Studies, Membrane Proteins genetics, Mutation, Missense genetics, Parkinson Disease genetics
- Abstract
Mutations in TMEM230 have recently been associated to Parkinson's disease (PD). To further understand the role of this gene in the Caucasian population, we interrogated our large repository of next generation sequencing data from unrelated PD cases and controls, as well as multiplex families with autosomal dominant PD. We identified 2 heterozygous missense variants in 2 unrelated PD cases and not in our control database (p.Y106H and p.I162V), and a heterozygous missense variant in 2 PD cases from the same family (p.A163T). However, data presented herein is not sufficient to support the role of any of these variants in PD pathology. A series of unified sequence kernel association tests also failed to show a cumulative effect of rare variation in this gene on the risk of PD in the general Caucasian population. Further evaluation of genetic data from different populations is needed to understand the genetic role of TMEM230 in PD etiology., (Copyright © 2016 Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
34. Expanding the Spectrum of Genes Involved in Huntington Disease Using a Combined Clinical and Genetic Approach.
- Author
-
Mariani LL, Tesson C, Charles P, Cazeneuve C, Hahn V, Youssov K, Freeman L, Grabli D, Roze E, Noël S, Peuvion JN, Bachoud-Levi AC, Brice A, Stevanin G, and Durr A
- Subjects
- Adult, Aged, Calcium Channels genetics, Female, Genetic Testing, Humans, Huntington Disease etiology, Male, Membrane Proteins genetics, Middle Aged, Phenotype, Retrospective Studies, Vesicular Transport Proteins genetics, Genetic Heterogeneity, Genetic Predisposition to Disease genetics, Huntingtin Protein genetics, Huntington Disease diagnosis, Huntington Disease genetics, Trinucleotide Repeat Expansion genetics
- Abstract
Importance: Huntington disease (HD), a prototypic monogenic disease, is caused by an expanded CAG repeat in the HTT gene exceeding 35 units. However, not all patients with an HD phenotype carry the pathological expansion in HTT, and the positive diagnosis rate is poor., Objectives: To examine patients with HD phenotypes to determine the frequency of HD phenocopies with typical features of HD but without pathological CAG repeat expansions in HTT in an attempt to improve the positive diagnosis rate., Design, Setting, and Participants: Between January 1, 2004, and April 18, 2011, a total of 226 consecutive index patients with an HD phenotype were referred to specialized clinics of the French National Huntington Disease Reference Centre for Rare Diseases. They underwent detailed clinical examination and follow-up, as well as neuropsychological, biological, imaging, and genetic examinations. Nucleotide expansions in JPH3, ATN1, TBP, and C9ORF72 and mutations in PRNP, as well as acquired conditions commonly causing HD phenocopies, were first screened., Main Outcomes and Measures: The diagnostic rate of HD phenocopies and frequency of other etiologies using deep clinical phenotyping and next generation sequencing. Our goal was to improve the genetic diagnosis of HD phenocopies and to identify new HD related genes., Results: One hundred ninety-eight patients carried a pathological CAG repeat expansion in HTT, whereas 28 patients (12 women and 16 men) did not. Huntington disease phenocopies accounted for 12.4%, and their mean (SD) age at onset was similar to those of the HD-HTT group (47.3 [12.7] years vs 50.3 [16.4] years, P = .29). We first identified 3 patients with abnormal CTG expansions in JPH3, a fourth patient with an antiphospholipid syndrome, and a fifth patient with B12 avitaminosis. A custom-made 63-gene panel was generated based on clinical evolution and exome sequencing. It contained genes responsible for HD phenocopies and other neurodegenerative conditions, as well as candidate genes from exome sequencing in 3 index cases with imaging features of brain iron accumulation. We identified mutations in genes associated with neurodegeneration, including CACNA1A (n = 2), VPS13A (n = 1), UBQLN2 (n = 1), and VCP (n = 1)., Conclusions and Relevance: Huntington disease phenocopies without CAG repeat expansions in HTT are not rare, occurring in 12.4% (28 of 226) herein, and should be considered in genetic counseling. We used next-generation sequencing combined with clinical data and disease evolution to explore multiple etiologies simultaneously. Our combined clinical and genetic exploration of 28 HD phenocopies identified the underlying cause in 35.7% (10 of 28). In conclusion, the etiologies of HD phenocopies are heterogeneous, and clinical evolution should be taken into account when searching for a genetic cause. The panel of candidate genes to be examined is larger than expected but can be guided by specific imaging and clinical features. Other neurodegenerative diseases with late onset in which variant segregation cannot be verified could be productively explored with the combined approach illustrated herein.
- Published
- 2016
- Full Text
- View/download PDF
35. Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion.
- Author
-
Obayashi M, Stevanin G, Synofzik M, Monin ML, Duyckaerts C, Sato N, Streichenberger N, Vighetto A, Desestret V, Tesson C, Wichmann HE, Illig T, Huttenlocher J, Kita Y, Izumi Y, Mizusawa H, Schöls L, Klopstock T, Brice A, Ishikawa K, and Dürr A
- Subjects
- Aged, 80 and over, Alleles, Atrophy genetics, Atrophy pathology, Brain pathology, DNA Mutational Analysis, Female, Haplotypes, Humans, Introns, Male, Pedigree, Spinocerebellar Ataxias pathology, Trinucleotide Repeat Expansion, Nerve Tissue Proteins genetics, Nuclear Proteins genetics, Spinocerebellar Ataxias genetics
- Abstract
Objective: Spinocerebellar ataxia 36 (SCA36) is an autosomal-dominant neurodegenerative disorder caused by a large (>650) hexanucleotide GGCCTG repeat expansion in the first intron of the NOP56 gene. The aim of this study is to clarify the prevalence, clinical and genetic features of SCA36., Methods: The expansion was tested in 676 unrelated SCA index cases and 727 controls from France, Germany and Japan. Clinical and neuropathological features were investigated in available family members., Results: Normal alleles ranged between 5 and 14 hexanucleotide repeats. Expansions were detected in 12 families in France (prevalence: 1.9% of all French SCAs) including one family each with Spanish, Portuguese or Chinese ancestry, in five families in Japan (1.5% of all Japanese SCAs), but were absent in German patients. All the 17 SCA36 families shared one common haplotype for a 7.5 kb pairs region flanking the expansion. While 27 individuals had typically long expansions, three affected individuals harboured small hexanucleotide expansions of 25, 30 and 31 hexanucleotide repeat-units, demonstrating that such a small expansion could cause the disease. All patients showed slowly progressive cerebellar ataxia frequently accompanied by hearing and cognitive impairments, tremor, ptosis and reduced vibration sense, with the age at onset ranging between 39 and 65 years, and clinical features were indistinguishable between individuals with short and typically long expansions. Neuropathology in a presymptomatic case disclosed that Purkinje cells and hypoglossal neurons are affected., Conclusions: SCA36 is rare with a worldwide distribution. It can be caused by a short GGCCTG expansion and associates various extracerebellar symptoms., (Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.)
- Published
- 2015
- Full Text
- View/download PDF
36. Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology.
- Author
-
Tesson C, Koht J, and Stevanin G
- Subjects
- Cytoskeleton genetics, Cytoskeleton metabolism, Cytoskeleton pathology, Genetic Diseases, Inborn pathology, Genetic Loci, Humans, Lipid Metabolism genetics, Paraplegia pathology, Genetic Diseases, Inborn genetics, Genetic Diseases, Inborn metabolism, Paraplegia genetics, Paraplegia metabolism
- Abstract
Hereditary spastic paraplegias (HSP) are rare neurodegenerative diseases sharing the degeneration of the corticospinal tracts as the main pathological characteristic. They are considered one of the most heterogeneous neurological disorders. All modes of inheritance have been described for the 84 different loci and 67 known causative genes implicated up to now. Recent advances in molecular genetics have revealed clinico-genetic heterogeneity of these disorders including their clinical and genetic overlap with other diseases of the nervous system. The systematic analysis of a large set of genes, including exome sequencing, is unmasking unusual phenotypes or inheritance modes associated with mutations in HSP genes and related genes involved in various neurological diseases. A new nosology may emerge after integration and understanding of these new data to replace the current classification. Collectively, functions of the known genes implicate the disturbance of intracellular membrane dynamics and trafficking as the consequence of alterations of cytoskeletal dynamics, lipid metabolism and organelle structures, which represent in fact a relatively small number of cellular processes that could help to find common curative approaches, which are still lacking.
- Published
- 2015
- Full Text
- View/download PDF
37. ELOVL5 mutations cause spinocerebellar ataxia 38.
- Author
-
Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, Ragusa N, Mancini C, Gaussen M, Calcia A, Mitro N, Hoxha E, Mura I, Coviello DA, Moon YA, Tesson C, Vaula G, Couarch P, Orsi L, Duregon E, Papotti MG, Deleuze JF, Imbert J, Costanzi C, Padovani A, Giunti P, Maillet-Vioud M, Durr A, Brice A, Tempia F, Funaro A, Boccone L, Caruso D, Stevanin G, and Brusco A
- Subjects
- Aged, Aged, 80 and over, Amino Acid Sequence, Animals, Arachidonic Acid blood, Cerebellum pathology, Docosahexaenoic Acids blood, Endoplasmic Reticulum metabolism, Fatty Acid Elongases, Female, Genetic Linkage, Genotype, Golgi Apparatus metabolism, Haplotypes, Humans, Italy, Male, Mice, Middle Aged, Pedigree, Purkinje Cells cytology, Acetyltransferases genetics, Lipid Metabolism genetics, Mutation genetics, Spinocerebellar Ataxias genetics
- Abstract
Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ω3 and ω6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases., (Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
38. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice.
- Author
-
Chort A, Alves S, Marinello M, Dufresnois B, Dornbierer JG, Tesson C, Latouche M, Baker DP, Barkats M, El Hachimi KH, Ruberg M, Janer A, Stevanin G, Brice A, and Sittler A
- Subjects
- Adult, Aged, Animals, Ataxin-7, Cells, Cultured, Child, Gene Knock-In Techniques, Humans, Mice, Mice, Inbred C57BL, Mice, Transgenic, Nerve Tissue Proteins metabolism, Rats, Rats, Wistar, Spinocerebellar Ataxias drug therapy, Interferon-beta therapeutic use, Motor Activity genetics, Mutation genetics, Nerve Tissue Proteins genetics, Spinocerebellar Ataxias genetics, Spinocerebellar Ataxias physiopathology
- Abstract
We showed previously, in a cell model of spinocerebellar ataxia 7, that interferon beta induces the expression of PML protein and the formation of PML protein nuclear bodies that degrade mutant ataxin 7, suggesting that the cytokine, used to treat multiple sclerosis, might have therapeutic value in spinocerebellar ataxia 7. We now show that interferon beta also induces PML-dependent clearance of ataxin 7 in a preclinical model, SCA7(266Q/5Q) knock-in mice, and improves motor function. Interestingly, the presence of mutant ataxin 7 in the mice induces itself the expression of endogenous interferon beta and its receptor. Immunohistological studies in brains from two patients with spinocerebellar ataxia 7 confirmed that these modifications are also caused by the disease in humans. Interferon beta, administered intraperitoneally three times a week in the knock-in mice, was internalized with its receptor in Purkinje and other cells and translocated to the nucleus. The treatment induced PML protein expression and the formation of PML protein nuclear bodies and decreased mutant ataxin 7 in neuronal intranuclear inclusions, the hallmark of the disease. No reactive gliosis or other signs of toxicity were observed in the brain or internal organs. The performance of the SCA7(266Q/5Q) knock-in mice was significantly improved on two behavioural tests sensitive to cerebellar function: the Locotronic® Test of locomotor function and the Beam Walking Test of balance, motor coordination and fine movements, which are affected in patients with spinocerebellar ataxia 7. In addition to motor dysfunction, SCA7(266Q/5Q) mice present abnormalities in the retina as in patients: ataxin 7-positive neuronal intranuclear inclusions that were reduced by interferon beta treatment. Finally, since neuronal death does not occur in the cerebellum of SCA7(266Q/5Q) mice, we showed in primary cell cultures expressing mutant ataxin 7 that interferon beta treatment improves Purkinje cell survival.
- Published
- 2013
- Full Text
- View/download PDF
39. Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia.
- Author
-
Tesson C, Nawara M, Salih MA, Rossignol R, Zaki MS, Al Balwi M, Schule R, Mignot C, Obre E, Bouhouche A, Santorelli FM, Durand CM, Oteyza AC, El-Hachimi KH, Al Drees A, Bouslam N, Lamari F, Elmalik SA, Kabiraj MM, Seidahmed MZ, Esteves T, Gaussen M, Monin ML, Gyapay G, Lechner D, Gonzalez M, Depienne C, Mochel F, Lavie J, Schols L, Lacombe D, Yahyaoui M, Al Abdulkareem I, Zuchner S, Yamashita A, Benomar A, Goizet C, Durr A, Gleeson JG, Darios F, Brice A, and Stevanin G
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Chromosome Mapping, Cytochrome P-450 Enzyme System genetics, Cytochrome P-450 Enzyme System metabolism, Cytochrome P450 Family 2, Female, Gene Expression Profiling, Genotype, Humans, Infant, Infant, Newborn, Male, Mutation, Phenotype, Phospholipases genetics, Phospholipases metabolism, Protein Transport, Young Adult, Fatty Acids metabolism, Mitochondria enzymology, Mitochondria genetics, Spastic Paraplegia, Hereditary enzymology, Spastic Paraplegia, Hereditary genetics
- Abstract
Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function., (Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
40. Mutations in KCND3 cause spinocerebellar ataxia type 22.
- Author
-
Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, Tsai PC, Ichikawa Y, Goto J, Monin ML, Li JZ, Chung MY, Mundwiller E, Shakkottai V, Liu TT, Tesson C, Lu YC, Brice A, Tsuji S, Burmeister M, Stevanin G, and Soong BW
- Subjects
- Adolescent, Adult, Asian People genetics, Chromosomes, Human, Pair 1, DNA Mutational Analysis, Family Health, Female, Genetic Linkage, Green Fluorescent Proteins genetics, HEK293 Cells, Humans, Male, Membrane Potentials genetics, Middle Aged, Patch-Clamp Techniques, Transfection, Young Adult, Genetic Predisposition to Disease genetics, Mutation genetics, Shal Potassium Channels genetics, Spinocerebellar Degenerations genetics
- Abstract
Objective: To identify the causative gene in spinocerebellar ataxia (SCA) 22, an autosomal dominant cerebellar ataxia mapped to chromosome 1p21-q23., Methods: We previously characterized a large Chinese family with progressive ataxia designated SCA22, which overlaps with the locus of SCA19. The disease locus in a French family and an Ashkenazi Jewish American family was also mapped to this region. Members from all 3 families were enrolled. Whole exome sequencing was performed to identify candidate mutations, which were narrowed by linkage analysis and confirmed by Sanger sequencing and cosegregation analyses. Mutational analyses were also performed in 105 Chinese and 55 Japanese families with cerebellar ataxia. Mutant gene products were examined in a heterologous expression system to address the changes in protein localization and electrophysiological functions., Results: We identified heterozygous mutations in the voltage-gated potassium channel Kv4.3-encoding gene KCND3: an in-frame 3-nucleotide deletion c.679_681delTTC p.F227del in both the Chinese and French pedigrees, and a missense mutation c.1034G>T p.G345V in the Ashkenazi Jewish family. Direct sequencing of KCND3 further identified 3 mutations, c.1034G>T p.G345V, c.1013T>C p.V338E, and c.1130C>T p.T377M, in 3 Japanese kindreds. Immunofluorescence analyses revealed that the mutant p.F227del Kv4.3 subunits were retained in the cytoplasm, consistent with the lack of A-type K(+) channel conductance in whole cell patch-clamp recordings., Interpretation: Our data identify the cause of SCA19/22 in patients of diverse ethnic origins as mutations in KCND3. These findings further emphasize the important role of ion channels as key regulators of neuronal excitability in the pathogenesis of cerebellar degeneration., (Copyright © 2012 American Neurological Association.)
- Published
- 2012
- Full Text
- View/download PDF
41. CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5.
- Author
-
Goizet C, Boukhris A, Durr A, Beetz C, Truchetto J, Tesson C, Tsaousidou M, Forlani S, Guyant-Maréchal L, Fontaine B, Guimarães J, Isidor B, Chazouillères O, Wendum D, Grid D, Chevy F, Chinnery PF, Coutinho P, Azulay JP, Feki I, Mochel F, Wolf C, Mhiri C, Crosby A, Brice A, and Stevanin G
- Subjects
- Adolescent, Adult, Aged, Animals, Base Sequence, Brain pathology, Cytochrome P450 Family 7, Female, Genes, Recessive, Genetic Variation, Heterozygote, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Pedigree, Point Mutation, Spastic Paraplegia, Hereditary pathology, Species Specificity, Young Adult, Codon, Nonsense genetics, Mutation, Missense genetics, Spastic Paraplegia, Hereditary genetics, Steroid Hydroxylases genetics
- Abstract
Thirty-four different loci for hereditary spastic paraplegias have been mapped, and 16 responsible genes have been identified. Autosomal recessive forms of spastic paraplegias usually have clinically complex phenotypes but the SPG5, SPG24 and SPG28 loci are considered to be associated with 'pure' forms of the disease. Very recently, five mutations in the CYP7B1 gene, encoding a cytochrome P450 oxysterol 7-alpha hydroxylase and expressed in brain and liver, have been found in SPG5 families. We analysed the coding region and exon-intron boundaries of the CYP7B1 gene by direct sequencing in a series of 82 unrelated autosomal recessive hereditary spastic paraplegia index patients, manifesting either a pure (n = 52) or a complex form (n = 30) of the disease, and in 90 unrelated index patients with sporadic pure hereditary spastic paraplegia. We identified eight, including six novel, mutations in CYP7B1 segregating in nine families. Three of these mutations were nonsense (p.R63X, p.R112X, p.Y275X) and five were missense mutations (p.T297A, p.R417H, p.R417C, p.F470I, p.R486C), the last four clustering in exon 6 at the C-terminal end of the protein. Residue R417 appeared as a mutational hot-spot. The mean age at onset in 16 patients was 16.4 +/- 12.1 years (range 4-47 years). After a mean disease duration of 28.3 +/- 13.4 years (10-58), spasticity and functional handicap were moderate to severe in all cases. Interestingly, hereditary spastic paraplegia was pure in seven SPG5 families but complex in two. In addition, white matter hyperintensities were observed on brain magnetic resonance imaging in three patients issued from two of the seven pure families. Lastly, the index case of one family had a chronic autoimmune hepatitis while his eldest brother died from cirrhosis and liver failure. Whether this association is fortuitous remains unsolved, however. The frequency of CYP7B1 mutations were 7.3% (n = 6/82) in our series of autosomal recessive hereditary spastic paraplegia families and 3.3% (n = 3/90) in our series of sporadic pure spastic paraplegia. The recent identification of CYP7B1 as the gene responsible for SPG5 highlights a novel molecular mechanism involved in hereditary spastic paraplegia determinism.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.