1. Fast and accurate polarimetric calibration of infrared imaging polarimetric sensors.
- Author
-
Gogler S, Bieszczad G, Swiderski J, Firmanty K, Bareła J, and Piątkowski T
- Abstract
Polarimetric imaging cameras require polarimetric calibration to accurately estimate the incident Stokes vector of incoming radiation. This calibration establishes a relationship between changes in the sensor signal and incident Stokes vector. In the standard procedure, an imager is presented with a set of input Stokes vectors with two different radiance values. In the long-wavelength infrared (LWIR) and mid-wavelength infrared bands, blackbodies with different temperatures are used for each set of Stokes vectors. The radiometric offset is subtracted, and standard radiometric or nonuniformity correction procedures are performed in a separate step. This paper proposes an alternative all-in-one approach that combines radiometric calibration, nonuniformity correction, and polarimetric calibration. The standard and proposed methods are compared for a division-of-time LWIR polarimeter. The proposed calibration method achieves an RMS error of 0.34% compared with the conventional technique's error of 0.83%, yielding a factor of 2.4 improvement in the reconstructed accuracy of a linear Stokes vector; in addition, it is less time-consuming and less prone to ambient temperature fluctuations than the typical two-point method. The method also accounts for beam wander and narcissus effects and enables simple, straightforward polarimetric measurement.
- Published
- 2021
- Full Text
- View/download PDF