1. Preparation, characterization, and liver targeting evaluation of a novel sustained-release brucine self-assembled micelle mediated by glycyrrhetinic acid.
- Author
-
Guan Q, Yang H, Xia Z, Li X, Zhang Y, Lin Z, Sun S, Yang Z, Zhou X, Lv S, and Wang Y
- Subjects
- Animals, Humans, Male, Drug Liberation, Rats, Sprague-Dawley, Rats, Particle Size, Mice, Biological Availability, Tissue Distribution, Micelles, Glycyrrhetinic Acid chemistry, Glycyrrhetinic Acid analogs & derivatives, Glycyrrhetinic Acid pharmacokinetics, Strychnine analogs & derivatives, Strychnine pharmacokinetics, Strychnine chemistry, Strychnine administration & dosage, Delayed-Action Preparations chemistry, Liver metabolism, Drug Carriers chemistry
- Abstract
Background: Cancer is a serious threat to human life, health and social development. In recent years, nanomicelles, as an emerging drug carrier material, have gradually entered people's field of vision because of their advantages of improving bioavailability, maintaining drug levels, reducing systemic side effects and increasing drug accumulation at target sites. Methods: In this study, B-GPSG nano-micelles were prepared by film dispersion hydration method using brucine as model drug and glycyrrhetinic acid-polyethylene glycol-3-methylene glycol-dithiodipropionic acid-glycerol monostearate polymer as nano-carrier. The preparation process, characterization, drug release in vitro, pharmacokinetics and liver targeting were investigated. Results: The results showed that the range of particle size, polydispersion index and Zeta potential were 102.7 ± 1.09 nm, 0.201 ± 0.02 and -24.5 ± 0.19 mV respectively. The entrapment efficiency and drug loading were 83.79 ± 2.13% and 12.56 ± 0.09%, respectively. The drug release experiments in vitro and pharmacokinetic experiments showed that it had obvious sustained release effect. For pharmacokinetics study, it shows that both the B-GPSG solution group and the B-PSG solution group changed the metabolic kinetic parameters of brucine, but the B-GPSG solution group had a better effect. Compared with the B-PSG solution group, the drug was more prolonged in rats. The half-life in the body and the retention time in the body of B-GPSG are more helpful to improve the bioavailability of the drug and play a long-term effect. The tail vein injection results of mice indicate that B-GPSG can target and accumulate brucine in the liver without affecting other key organs. Cell uptake experiments and tissue distribution experiments in vivo show that glycyrrhetinic acid modified nano-micelles can increase the accumulation of brucine in hepatocytes, has a good liver targeting effect, and can be used as a new preparation for the treatment of liver cancer. Conclusion: The B-SPSG prepared in this experiment can provide a new treatment method and research idea for the treatment of liver cancer., Competing Interests: Declaration of conflicting interestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF