1. Resource Flow Network Structure Drives Metaecosystem Function.
- Author
-
Peller T, Gounand I, and Altermatt F
- Subjects
- Models, Biological, Ecosystem
- Abstract
AbstractNonliving resources frequently flow across ecosystem boundaries, which can yield networks of spatially coupled ecosystems. Yet the significance of resource flows for ecosystem function has predominantly been understood by studying two or a few coupled ecosystems, overlooking the broader resource flow network and its spatial structure. Here, we investigate how the spatial structure of larger resource flow networks influences ecosystem function at metaecosystem scales by analyzing metaecosystem models with homogeneously versus heterogeneously distributed resource flow networks but otherwise identical characteristics. We show that metaecosystem function can differ strongly between metaecosystems with contrasting resource flow networks. Differences in function generally arise through the scaling up of nonlinear local processes interacting with spatial variation in local dynamics, the latter of which is influenced by network structure. However, we find that neither network structure guarantees the greatest metaecosystem function. Rather, biotic (organism traits) and abiotic (resource flow rates) properties interact with network structure to determine which yields greater metaecosystem function. Our findings suggest that the spatial structure of resource flow networks coupling ecosystems can be a driver of ecosystem function at landscape scales. Furthermore, our study demonstrates how modifications to the structural, biotic, or abiotic properties of metaecosystem networks can have nontrivial large-scale effects on ecosystem function.
- Published
- 2024
- Full Text
- View/download PDF