1. Household Air Pollution Concentrations after Liquefied Petroleum Gas Interventions in Rural Peru: Findings from a One-Year Randomized Controlled Trial Followed by a One-Year Pragmatic Crossover Trial.
- Author
-
Fandiño-Del-Rio M, Kephart JL, Williams KN, Shade T, Adekunle T, Steenland K, Naeher LP, Moulton LH, Gonzales GF, Chiang M, Hossen S, Chartier RT, Koehler K, and Checkley W
- Subjects
- Adult, Cooking, Cross-Over Studies, Female, Humans, Middle Aged, Particulate Matter analysis, Peru, Rural Population, Soot, Air Pollution, Air Pollution, Indoor analysis, Petroleum
- Abstract
Background: Household air pollution (HAP) from biomass fuel combustion remains a leading environmental risk factor for morbidity worldwide., Objective: Measure the effect of liquefied petroleum gas (LPG) interventions on HAP exposures in Puno, Peru., Methods: We conducted a 1-y randomized controlled trial followed by a 1-y pragmatic crossover trial in 180 women age 25-64 y. During the first year, intervention participants received a free LPG stove, continuous fuel delivery, and regular behavioral messaging, whereas controls continued their biomass cooking practices. During the second year, control participants received a free LPG stove, regular behavioral messaging, and vouchers to obtain LPG tanks from a nearby distributor, whereas fuel distribution stopped for intervention participants. We collected 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM) with aerodynamic diameter ≤ 2.5 μ m ( PM 2.5 ), black carbon (BC), and carbon monoxide (CO) at baseline and 3-, 6-, 12-, 18-, and 24-months post randomization., Results: Baseline mean [ ± standard deviation ( SD ) ] PM 2.5 (kitchen area concentrations 1,220 ± 1,010 vs. 1,190 ± 880 μ g / m 3 ; personal exposure 126 ± 214 vs. 104 ± 100 μ g / m 3 ), CO (kitchen 53 ± 49 vs. 50 ± 41 ppm ; personal 7 ± 8 vs. 7 ± 8 ppm ), and BC (kitchen 180 ± 120 vs. 210 ± 150 μ g / m 3 ; personal 19 ± 16 vs. 21 ± 22 μ g / m 3 ) were similar between control and intervention participants. Intervention participants had consistently lower mean ( ± SD ) concentrations at the 12-month visit for kitchen ( 41 ± 59 μ g / m 3 , 3 ± 6 μ g / m 3 , and 8 ± 13 ppm ) and personal exposures ( 26 ± 34 μ g / m 3 , 2 ± 3 μ g / m 3 , and 3 ± 4 ppm ) to PM 2.5 , BC, and CO when compared to controls during the first year. In the second year, we observed comparable HAP reductions among controls after the voucher-based intervention for LPG fuel was implemented (24-month visit PM 2.5 , BC, and CO kitchen mean concentrations of 34 ± 74 μ g / m 3 , 3 ± 5 μ g / m 3 , and 6 ± 6 ppm and personal exposures of 17 ± 15 μ g / m 3 , 2 ± 2 μ g / m 3 , and 3 ± 4 ppm , respectively), and average reductions were present among intervention participants even after free fuel distribution stopped (24-month visit PM 2.5 , BC, and CO kitchen mean concentrations of 561 ± 1,251 μ g / m 3 , 82 ± 124 μ g / m 3 , and 23 ± 28 ppm and personal exposures of 35 ± 38 μ g / m 3 , 6 ± 6 μ g / m 3 , and 4 ± 5 ppm , respectively)., Discussion: Both home delivery and voucher-based provision of free LPG over a 1-y period, in combination with provision of a free LPG stove and longitudinal behavioral messaging, reduced HAP to levels below 24-h World Health Organization air quality guidelines. Moreover, the effects of the intervention on HAP persisted for a year after fuel delivery stopped. Such strategies could be applied in LPG programs to reduce HAP and potentially improve health. https://doi.org/10.1289/EHP10054.
- Published
- 2022
- Full Text
- View/download PDF