1. Whole Genome Linkage and Association Analyses Identify DLG Associated Protein-1 as a Novel Positional and Biological Candidate Gene for Muscle Strength: The Long Life Family Study.
- Author
-
Santanasto AJ, Acharya S, Wojczynski MK, Cvejkus RK, Lin S, Brent MR, Anema JA, Wang L, Thyagarajan B, Christensen K, Daw EW, and Zmuda JM
- Subjects
- Adult, Aged, Aged, 80 and over, Female, Humans, Male, Middle Aged, Genetic Linkage genetics, Longevity genetics, Muscle Strength genetics, Muscle Strength physiology, Polymorphism, Single Nucleotide, SAP90-PSD95 Associated Proteins genetics, Genome-Wide Association Study, Hand Strength physiology
- Abstract
Background: Grip strength is a robust indicator of overall health, is moderately heritable, and predicts longevity in older adults., Methods: Using genome-wide linkage analysis, we identified a novel locus on chromosome 18p (mega-basepair region: 3.4-4.0) linked to grip strength in 3 755 individuals from 582 families aged 64 ± 12 years (range 30-110 years; 55% women). There were 26 families that contributed to the linkage peak (cumulative logarithm of the odds [LOD] score = 10.94), with 6 families (119 individuals) accounting for most of the linkage signal (LOD = 6.4). In these 6 families, using whole genome sequencing data, we performed association analyses between the 7 312 single nucleotide (SNVs) and insertion deletion (INDELs) variants in the linkage region and grip strength. Models were adjusted for age, age2, sex, height, field center, and population substructure., Results: We found significant associations between genetic variants (8 SNVs and 4 INDELs, p < 5 × 10-5) in the Disks Large-associated Protein 1 (DLGAP1) gene and grip strength. Haplotypes constructed using these variants explained up to 98.1% of the LOD score. Finally, RNAseq data showed that these variants were significantly associated with the expression of nearby Myosin Light Chain 12A (MYL12A), Structural Maintenance of Chromosomes Flexible Hinge Domain Containing 1 (SMCHD1), Erythrocyte Membrane Protein Band 4.1 Like 3 (EPB41L3) genes (p < .0004)., Conclusions: The DLGAP1 gene plays an important role in the postsynaptic density of neurons; thus, it is both a novel positional and biological candidate gene for follow-up studies aimed at uncovering genetic determinants of muscle strength., (© The Author(s) 2024. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF