1. An electrochemical sensing potential of cobalt oxide nanoparticles towards citric acid integrated with computational approach in food and biological media.
- Author
-
Ajab H, Jafry AT, Sajid H, Addicoat MA, Ayub K, and Haq MZU
- Subjects
- Metal Nanoparticles chemistry, Limit of Detection, Nanoparticles chemistry, Cobalt chemistry, Electrochemical Techniques instrumentation, Oxides chemistry, Citric Acid chemistry
- Abstract
Although citric acid (CA) has antioxidant, antibacterial, and acidulating properties, chronic ingestion of CA can cause urolithiasis, hypocalcemia, and duodenal cancer, emphasizing the need for early detection. There are very few documented electrochemical-based sensing methods for CA detection due to the challenging behavior of electrode fouling caused by reactive oxidation products. In this study, a novel, non-enzymatic, and economical electrochemical sensor based on cobalt oxide nanoparticles (CoO
x NPs) is successfully reported for detection CA. The CoOx NPs were synthesized through a simple thermal decomposition method and characterized by SEM, FT-IR, EDX, and XRD techniques. The proposed sensing platform was optimized by various parameters, including pH (7.0), time (15 min), and concentration of nanoparticles (100 mM) etc. In a linear range of 0.05-2500 μM, a low detection limit (LOD) of 0.13 μM was achieved. Theoretical calculations (ΔRT), confirmed hydrogen bonding and electrostatic interactions between CoOx NPs and CA. The detection method exhibited high selectivity in real media like food and biological samples, with good recovery values when compared favorably to the HPLC method. To facilitate effective on-site investigation, such a sensing platform can be assembled into a portable device., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF