1. Mouse liver blood flow is regulated by hepatic stellate cells in response to the sympathetic neurotransmitter norepinephrine.
- Author
-
Dohi N, Yamaguchi M, Iwami K, Kaneko YK, Saito SY, and Ishikawa T
- Abstract
Background: There is no clear information on the regulation of liver blood flow by the autonomic nervous system. We conducted this study to investigate whether quiescent hepatic stellate cells (qHSCs) regulate liver blood flow in response to the sympathetic neurotransmitter norepinephrine (NE)., Methods: qHSCs isolated from mice were cultured in Dulbecco's modified Eagle medium without fetal bovine serum for 1 day on collagen gel. NE-induced qHSC contraction was evaluated using the quantitative single-cell contraction measurement method that we had developed previously. For the measurement of liver perfusion pressure in situ, a buffer solution was perfused from the portal vein in mice., Results: NE-induced a reversible contraction of qHSCs. This contraction was suppressed by the nonmuscle myosin II inhibitor blebbistatin, the myosin light chain kinase inhibitor ML-9, the Rho kinase inhibitor H-1152, the calmodulin inhibitor W-7, the store-operated calcium channel inhibitor YM-58483, and the IP
3 receptor inhibitor xestospongin C. In contrast, the transient receptor potential C channel inhibitor SKF96365 did not affect the NE-induced contraction., Conclusion: These results suggest that qHSCs contract in response to NE., New & Noteworthy: The present study provides direct evidence for the first time that norepinephrine (NE) induces a reversible contraction of isolated single quiescent hepatic stellate cells (qHSCs) and further suggests that the NE-mediated qHSC contraction participates in the regulation of liver blood flow in vivo., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF