1. Isolation, characterization and degradation performance of oxytetracycline degrading bacterium Planococcus sp. strain pw2.
- Author
-
Suruttaiyan S, Duraisamy P, Krishnaraj S, Perumalsamy L, and Subpiramaniyam S
- Subjects
- Anti-Bacterial Agents, Aquaculture, Bacteria, RNA, Ribosomal, 16S genetics, Oxytetracycline
- Abstract
Oxytetracycline (OTC), is a widely used veterinary antibiotic for treatment and prophylaxis in aquaculture. As an emerging pollutant, OTC in the environment exerts selective pressure on aquatic organisms causing proliferation of antibiotic resistant genes. In the present study, an OTC tolerant isolate labelled as pw2 was selected among the 11 OTC tolerant isolates, isolated from the aquaculture effluent, for investigating its OTC degrading potential. The cell morphology, biochemical characteristics, and 16S ribosomal RNA (rRNA) gene sequence of the isolated strain indicated that it belonged to the genus Planococcus. The OTC removal percentage was estimated through measuring its residual concentration in the culture medium with high performance liquid chromatography. The strain exhibited maximum removal efficiency of 90.62%, with initial OTC concentration of 10 µg/ml. The optimum degrading conditions were 35 °C and pH 7. The degradation rate of OTC with (biotic) and without strain pw2 (abiotic) was 3.253 and 1.149 mg/l/d, respectively. The half-life was recorded to be 2.13 d in the presence of strain pw2, in contrast to 6.03 days recorded without strain pw2. The total (biotic + abiotic) OTC degradation efficiency was 75.74, 83.93, 90.62, and 86.47% for the initial OTC concentrations of 1 to 25 µg/ml, respectively. Addition of carbon and nitrogen did not influence the OTC removal which indicates Planococcus sp. pw2 use OTC as sole energy source. Thus, Planococcus sp. pw2 plays a vital role in reducing the OTC concentration in the environment, offering a promising method for treatment of aquaculture effluent containing OTC., (© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF