1. Carcinoembryonic antigen-expressing oncolytic measles virus derivative in recurrent glioblastoma: a phase 1 trial.
- Author
-
Galanis E, Dooley KE, Keith Anderson S, Kurokawa CB, Carrero XW, Uhm JH, Federspiel MJ, Leontovich AA, Aderca I, Viker KB, Hammack JE, Marks RS, Robinson SI, Johnson DR, Kaufmann TJ, Buckner JC, Lachance DH, Burns TC, Giannini C, Raghunathan A, Iankov ID, and Parney IF
- Subjects
- Humans, Measles virus genetics, Carcinoembryonic Antigen genetics, Neoplasm Recurrence, Local therapy, Measles Vaccine, Tumor Microenvironment, Oncolytic Viruses, Glioblastoma, Oncolytic Virotherapy
- Abstract
Measles virus (MV) vaccine strains have shown significant preclinical antitumor activity against glioblastoma (GBM), the most lethal glioma histology. In this first in human trial (NCT00390299), a carcinoembryonic antigen-expressing oncolytic measles virus derivative (MV-CEA), was administered in recurrent GBM patients either at the resection cavity (Group A), or, intratumorally on day 1, followed by a second dose administered in the resection cavity after tumor resection on day 5 (Group B). A total of 22 patients received study treatment, 9 in Group A and 13 in Group B. Primary endpoint was safety and toxicity: treatment was well tolerated with no dose-limiting toxicity being observed up to the maximum feasible dose (2×10
7 TCID50). Median OS, a secondary endpoint, was 11.6 mo and one year survival was 45.5% comparing favorably with contemporary controls. Other secondary endpoints included assessment of viremia, MV replication and shedding, humoral and cellular immune response to the injected virus. A 22 interferon stimulated gene (ISG) diagonal linear discriminate analysis (DLDA) classification algorithm in a post-hoc analysis was found to be inversely (R = -0.6, p = 0.04) correlated with viral replication and tumor microenvironment remodeling including proinflammatory changes and CD8 + T cell infiltration in post treatment samples. This data supports that oncolytic MV derivatives warrant further clinical investigation and that an ISG-based DLDA algorithm can provide the basis for treatment personalization., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF